|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Layer-dependent exciton dynamics in InSe/WS2 heterostructures |
| Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑)† |
| Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
|
|
|
Abstract Understanding interlayer charge transfer is crucial for elucidating interface interactions in heterostructures. As the layer number can significantly influence the interface coupling and band alignment, the charge transfer behaviors can be largely regulated. Here, we constructed two-dimensional (2D) heterostructures consisting of monolayer WS$_{2}$ and few-layer InSe to investigate the impact of InSe thickness on exciton dynamics. We performed photoluminescence (PL) spectroscopy and lifetime measurements on pristine few-layer InSe and the heterostructures with different InSe thicknesses. For pristine InSe layers, we found a non-monotonic layer dependence on PL lifetime, which can be attributed to the interplay between the indirect-to-direct bandgap transition and surface recombination effects. For heterostructures, we demonstrated that the type I band alignment of the heterostructure facilitates electron and hole transfer from monolayer WS$_2$ to InSe. As the InSe layer number increases, the reduction in conduction band minimum (CBM) enhances the driving force for charge transfer, thereby improving the transfer efficiency. Furthermore, we fabricated and characterized a WS$_{2}$/InSe optoelectronic device. By analyzing bias voltage dependent PL spectra, we further demonstrated that the trions in WS$_{2}$ within the heterostructure are positively charged ($X^+$), and their emission intensity can be efficiently modulated by applying different biases. This study not only reveals the layer-dependent characteristics of band alignment and interlayer charge transfer in heterostructures but also provides valuable insights for the applications of 2D semiconductors in optoelectronic devices.
|
Received: 12 February 2025
Revised: 26 March 2025
Accepted manuscript online: 31 March 2025
|
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
| |
71.35.-y
|
(Excitons and related phenomena)
|
| |
71.35.Pq
|
(Charged excitons (trions))
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 92263107, U23A20570, 52221001, 62090035, and 52022029) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2024RC1034). |
Corresponding Authors:
Xiao Wang
E-mail: xiao_wang@hnu.edu.cn
|
Cite this article:
Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑) Layer-dependent exciton dynamics in InSe/WS2 heterostructures 2025 Chin. Phys. B 34 097802
|
[1] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435 [2] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P and Peng B 2020 Nano Lett. 20 2129 [3] Xie W, Zhang L, Yue Y, Li M and Wang H 2024 Phys. Rev. B 109 024406 [4] Ma H, Zhu Y, Liu Y, Bai R, Zhang X, Ren Y and Jiang C 2023 Chin. Phys. B 32 107201 [5] Ye Z, Cao T, O’Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214 [6] Latini S, Olsen T and Thygesen K S 2015 Phys. Rev. B 92 245123 [7] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569 [8] Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091 [9] Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223 [10] Liu Y, Hu X, Wang T and Liu D 2019 ACS Nano 13 14416 [11] Wang T, Zhang Y, Liu Y, Li J, Liu D, Luo J and Ge K 2018 J. Phys. Chem. C 122 18651 [12] Liu Y, Li H, Qiu C, Hu X and Liu D 2020 Nano Res. 13 661 [13] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett. 15 2794 [14] Huo C F, Yun T, Yan X Q, Liu Z, Zhao X, Xu W, Cui Q, Liu Z B and Tian J G 2023 Chin. Phys. B 32 067203 [15] Li J H, Bing D,Wu Z T,Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802 [16] Mudd GW, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714 [17] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 [18] Weeraddana T M, Premathilaka S M, Tang Y, Antu A D, Roach A, Yang J and Sun L 2022 J. Phys. Chem. Lett. 13 7756 [19] Zhang H, Fu J, Carvalho A, Poh E T, Chung J Y, Feng M, Chen Y, Wang B, Shang Q, Yang H, Zhang Z, Lim S X, Gao W, Gradečak S, Qiu CW, Lu J, He C, Sum T C and Sow C H 2024 ACS Nano 18 16832 [20] Chen J S, Li M, Wu Q, Fron E, Tong X and Cotlet M 2019 ACS Nano 13 8461 [21] Tsai T H, Yang F S, Ho P H, Liang Z Y, Lien C H, Ho C H, Lin Y F and Chiu P W 2019 ACS Appl. Mater. Interfaces 11 35969 [22] Cao T, Hao S, Wu C, Pan C, Dai Y, Cheng B, Liang S J and Miao F 2024 Chin. Phys. B 33 047302 [23] Brotons-Gisbert M, Proux R, Picard R, Andres-Penares D, Branny A, Molina-Sanchez A, Sanchez-Royo J F and Gerardot B D 2019 Nat. Commun. 10 3913 [24] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800 [25] Liu Y, Zhong Q, Liang D, Jiang Q, Shuai Q, Yang X, Yi X, Sun X, Sun R, Zhong Y, Ge C, Tan Q, Luo Z, Chen S and Pan A 2023 Laser Photonics Rev. 17 2300234 [26] Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, Lu X, Wang G and Zhou X 2021 Chin. Phys. B 30 078101 [27] Song C, Huang S, Wang C, Luo J and Yan H 2020 J. Appl. Phys. 128 060901 [28] Hao Q, Yi H, Su H,Wei B,Wang Z, Lao Z, Chai Y,Wang Z, Jin C, Dai J and Zhang W 2019 Nano Lett. 19 2634 [29] Wang Y, Zeng Z, Tian Z, Li C, Braun K, Huang L, Li Y, Luo X, Yi J, Wu G, Liu G, Li D, Zhou Y, Chen M, Wang X and Pan A 2024 Adv. Mater. 36 2410696 [30] Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G,Wu K, Zhang C, Jiang Y, Zhu X L and Zhuang X J 2022 Chin. Phys. B 31 057803 [31] Wu T H, Cheng H Y, LaiWC, Sankar R, Chang C S and Lin K H 2023 Nanoscale 15 3169 [32] Ubrig N, Ponomarev E, Zultak J, et al. 2020 Nat. Mater. 19 299 [33] Zheng T, Wu Z T, Nan H Y, Yu Y F, Zafar A, Yan Z Z, Lu J P and Ni Z H 2017 RSC Adv. 7 54964 [34] Pike N A, Pachter R, AltvaterMA, Stevens C E, Klein M, Hendrickson J R, Zhang H, Krylyuk S, Davydov A V and Glavin N R 2024 J. Phys. Chem. C 128 7957 [35] Sun Z Y, Li Y, Xu B, Chen H, Wang P, Zhao S X, Yang L, Gao B, Dou X M, Sun B Q, Zhen L and Xu C Y 2021 Adv. Opt. Mater. 9 2100438 [36] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418 [37] Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M and Yu T 2015 ACS Nano 9 647 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|