Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097101    DOI: 10.1088/1674-1056/ade073
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices Prev   Next  

First-principles design of excitonic insulators: A review

Hongwei Qu(曲宏伟)1, Haitao Liu(刘海涛)2,3, and Yuanchang Li(李元昌)1,†
1 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), and School of Interdisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 National Key Laboratory of Computational Physics, Beijing 100088, China
Abstract  The excitonic insulator (EI) is a more than 60-year-old theoretical proposal that is still elusive. It is a purely quantum phenomenon involving the spontaneous generation of excitons in quantum mechanics and the spontaneous condensation of excitons in quantum statistics. At this point, the excitons represent the ground state rather than the conventional excited state. Thus, the scarcity of candidate materials is a key factor contributing to the lack of recognized EI to date. In this review, we begin with the birth of EI, presenting the current state of the field and the main challenges it faces. We then focus on recent advances in the discovery and design of EIs based on the first-principles Bethe-Salpeter scheme, in particular the dark-exciton rule guided screening of materials. It not only opens up new avenues for realizing excitonic instability in direct-gap and wide-gap semiconductors, but also leads to the discovery of novel quantum states of matter such as half-EIs and spin-triplet EIs. Finally, we will look ahead to possible research pathways leading to the first recognized EI, both theoretically and computationally.
Keywords:  excitonic insulator      Bose condensation      first-principles      Bethe-Salpeter equation (BSE)  
Received:  25 April 2025      Revised:  30 May 2025      Accepted manuscript online:  04 June 2025
PACS:  71.35.Lk (Collective effects (Bose effects, phase space filling, and excitonic phase transitions))  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.05.Hd (Other semiconductors)  
  11.10.St (Bound and unstable states; Bethe-Salpeter equations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406400 and 2020YFA0308800) and the National Natural Science Foundation of China (Grant No. 12474064).
Corresponding Authors:  Yuanchang Li     E-mail:  yuancli@bit.edu.cn

Cite this article: 

Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌) First-principles design of excitonic insulators: A review 2025 Chin. Phys. B 34 097101

[1] Varsano D, Sorella S, Sangalli D, Barborini M, Corni S, Molinari E and Rontani M 2017 Nat. Commun. 8 1461
[2] Jiang Z, Li Y, Zhang S and Duan W 2018 Phys. Rev. B 98 081408
[3] Kuneš J 2015 J. Phys.: Condens. Matter 27 333201
[4] Huang Y, Shan Y, Du L and Du R 2023 Acta Phys. Sin. 72 177101 (in Chinese)
[5] Wu S, Schoop L, Sodemann I, Moessner R, Cava R and Ong N 2024 Nature 635 301
[6] Kaneko T and Ohta Y 2025 J. Phys. Soc. Jpn. 94 012001
[7] Frenkel J 1931 Phys. Rev. 37 17
[8] Frenkel J 1931 Phys. Rev. 37 1276
[9] Peierls R 1932 Ann. Physics 405 905
[10] Blatt J M, Böer K W and Brandt W 1962 Phys. Rev. 126 1691
[11] Mott N F 1961 Philos. Mag. 6 287
[12] Knox R X 1963 Solid State Physics (edited by Seitz F and Turnbull D) Suppl. 5, pp. 100
[13] Keldysh L V and Kopaev Y V 1965 Sov. Phys.-Solid State 6 2219
[14] DesCloizeaux J 1965 J. Phys. Chem. Solids 26 259
[15] Jérome D, Rice T and Kohn W 1967 Phys. Rev. 158 462
[16] Halperin B and Rice T 1968 Rev. Mod. Phys. 40 755
[17] Kohn W and Sherrington D 1970 Rev. Mod. Phys. 42 1
[18] Zittartz J 1968 Phys. Rev. 165 612
[19] Hanamurat E and Haug H 1974 Solid State Commun. 15 1567
[20] Eisenstein J and MacDonald A 2004 Nature 432 691
[21] Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A and Georges A 2020 Phys. Rev. Lett. 124 197601
[22] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forró L 2007 Phys. Rev. Lett. 99 146403
[23] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y, Venema L, MacDougall G J, Chiang T C, Fradkin E, Wezel J V and Abbamonte P 2017 Science 358 1314
[24] Rossnagel K, Kipp L and Skibowski M 2002 Phys. Rev. B 65 235101
[25] Gao Q, Chan Y,Wang Y, Zhang H, Pu J, Cui S, Yang Y, Liu Z, Shen D, Sun Z, Jiang J, Chiang T C and Chen P 2023 Nat. Commun. 14 994
[26] Song Y, Jia C, Xiong H, Wang B, Jiang Z, Huang K, Hwang J, Li Z, Hwang C, Liu Z, Shen D, Sobota J, Kirchmann P, Xue J, Devereaux T, Mo S K, Shen Z X and Tang S 2023 Nat. Commun. 14 1116
[27] Gao Q, Chan Y, Jiao P, Chen H, Yin S, Tangprapha K, Yang Y, Li X, Liu Z, Shen D, Jiang S and Chen P 2024 Nat. Phys. 20 597
[28] Samaneh Ataei S, Varsano D, Molinari E and Rontani M 2021 Proc. Natl. Acad. Sci. USA 118 e2010110118
[29] Yang H, Wang X and Li X 2022 New J. Phys. 24 083010
[30] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, NoharaMand Takagi H 2009 Phys. Rev. Lett. 103 026402
[31] Windgätter L, Rösner M, Mazza G, Hübener H, Georges A, Millis A J, Latini S and Rubio A 2021 npj Comput. Mater. 7 210
[32] Guo M and Li Y 2024 Appl. Phys. Lett. 125 253105
[33] Huang J, Jiang B, Yao J, et al. 2024 Phys. Rev. X 14 011046
[34] Zhang P, Dong Y, Yan D, Jiang B, Yang T, Li J, Guo Z, Huang Y, Haobo Q, Li Y, Kurokawa K, Wang R, Nie Y, Hashimoto M, Lu D, Jiao W H, Shen J, Qian T, Wang Z, Shi Y and Kondo T 2024 Phys. Rev. X 14 011047
[35] Yao J, Sheng H, Zhang R, Pang R, Zhou J,Wu Q,Weng H, Dai X, Fang Z and Wang Z 2024 Chin. Phys. Lett. 41 097101
[36] Jiang B, Yao J, Yan D, Guo Z, Qu G, Deng X, Huang Y, Ding H, Shi Y, Wang Z and Qian T 2024 Chin. Phys. B 33 067402
[37] Hossain M, Cochran T, Jiang Y, et al. 2023 arXiv:2312.15862 [condmat. str-el]
[38] Wang J, Liu G and Zhang C 2017 Phys. Rev. B 95 075129
[39] Li Z, Nadeem M, Yue Z, Cortie D, Fuhrer M, Wang X 2019 Nano Lett. 19 4960
[40] Wang J, Nie P, Li X, Zuo H, Fauqué B, Zhu Z and Behnia K 2020 Proc. Natl. Acad. Sci. USA 117 30215
[41] Du L, Li X, Lou W, Sullivan G, Chang K, Kono J and Du R 2017 Nat. Commun. 8 1971
[42] Wang R, Sedrakyan T, Wang B, Du L and Du R 2023 Nature 619 57
[43] Liu X, Li J, Watanabe K, Taniguchi T, Hone J, Halperin B, Kim P and Dean C 2022 Science 375 205
[44] Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J, Shan J and Mak K 2022 Nat. Phys. 18 395
[45] Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z Zhang C, Cui Y T and Shi S F 2022 Nat. Phys. 18 1171
[46] Xu Y, Kang K, Watanabe K, Taniguchi T, Mak K and Shan J 2022 Nat. Nanotechnol. 17 934
[47] Tan Q, Rasmita A, Zhang Z, Cai H, Cai X, Dai X, Watanabe K, Taniguchi T, MacDonald A and Gao W 2023 Nat. Mater. 22 605
[48] Lian Z, Meng Y, Ma L, Maity I, Yan L,Wu Q, Huang X, Chen D, Chen X, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Lischner J, Cui Y T and Shi S F 2024 Nat. Phys. 20 34
[49] Wang Z, Rhodes D,Watanabe K, Taniguchi T, Hone J, Shan J and Mak K 2019 Nature 574 76
[50] Jiang Z, Li Y, Duan W. and Zhang S 2019 Phys. Rev. Lett. 122 236402
[51] Jiang Z, Li Y, Zhang S and Duan W 2020 Phys. Rev. Lett. 124 166401
[52] Dong S and Li Y 2020 Phys. Rev. B 102 155119
[53] Dong S and Li Y 2021 Phys. Rev. B 104 085133
[54] Sethi G, Zhou Y, Zhu L, Yang L and Liu F 2021 Phys. Rev. Lett. 126 196403
[55] Liu J, Liu G and Li Y 2021 Phys. Rev. B 104 085150
[56] Liu J and Li Y 2022 Phys. Rev. B 106 035135
[57] Zhao Y, Qu H, Zhao J, Kang L and Zhou S 2025 Nano Lett. 25 1108
[58] Liu J, Qu H and Li Y 2024 New J. Phys. 26 103034
[59] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J, Marchetti F, Szymańska M, André R, Staehli J, Savona V, Littlewood P B, Deveaud B and Dang L S 2006 Nature 443 409
[60] Bucher B, Steiner P and Wachter P 1991 Phys. Rev. Lett. 67 2717
[61] Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237
[62] Tan H, Li Y, Zhang S and Duan W 2018 Phys. Chem. Chem. Phys. 20 18844
[63] Tan H, Liu H, Li Y and DuanW and Zhang S 2019 J. Chem. Phys. 151 124703
[64] Marini A, Hogan C, Grüning M and Varsano D 2009 Comput. Phys. Comm. 180 1392
[65] Tiago M, Northrup J and Louie S 2003 Phys. Rev. B 67 115212
[66] Choi J, Cui P, Lan H and Zhang Z 2015 Phys. Rev. Lett. 115 066403
[67] Jiang Z, Liu Z, Li Y and Duan W 2017 Phys. Rev. Lett. 118 266401
[68] Lucking M, Xie W, Choe D, West D, Lu T and Zhang S 2018 Phys. Rev. Lett. 120 086101
[69] Ma M, Han D, Chen N, Wang D and Li X 2022 Materials 15 7715
[70] Sun S, Ren Y, Zhang D, Lou W and Chang K 2024 Phys. Rev. B 110 165430
[71] Qin L, Zhang Z, Jiang Z, Fan K, Zhang W, Tang Q, Xia H, Meng F, Zhang Q, Gu L, West D, Zhang S and Fu Y S 2021 ACS Nano 15 8184
[72] Wang D, Chen Y, Niu Z, Lou W and Chang K 2024 Chin. Phys. Lett. 41 087101
[73] Chen Y, Huang Y, Lou W, Cai Y and Chang K 2020 Phys. Rev. B 102 165413
[74] Agarwal A, Qin Y, Chen B, Blei M, Wu K, Liu L, Shen Y, Wright D, Green M, Zhuang H and Tongay S 2018 Nanoscale 10 15654
[75] Varsano D, Palummo M, Molinari E and Rontani M 2020 Nat. Nanotechnol. 15 367
[76] Jia Y, Wang P, Chiu C, et al. 2022 Nat. Phys. 18 87
[77] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y, Chu J, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94
[78] Wang R, Erten O, Wang B and Xing D 2019 Nat. Commun. 10 210
[79] Hu L, Zhang R, Zhang F and Wu C 2020 Phys. Rev. B 102 235115
[80] Dong S and Li Y 2023 Phys. Rev. B 107 235147
[81] Yang H, Zeng J, Shao Y, Xu Y, Dai X and Li X 2024 Phys. Rev. B 109 075167
[82] Dong S, Chen Y, Qu H, Lou W and Chang K 2025 Phys. Rev. Lett. 134 066602
[83] Zhitomirsky M, Rice T and Anisimov V 1999 Nature 402 251
[84] Cai M, Miao M, Liang Y, Jiang Z, Liu Z, Zhang W, Liao X, Zhu L, West D, Zhang S and Fu Y S 2023 Nat. Commun. 14 3691
[85] Qu H, Zhang Z and Li Y 2024 arXiv:2412.14600 [cond-mat.str-el]
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[4] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[5] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[6] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[7] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[8] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[9] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[10] Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2025, 34(5): 057701.
[11] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[12] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[13] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[14] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[15] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
No Suggested Reading articles found!