Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096101    DOI: 10.1088/1674-1056/add678
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence

Xuejiao Sun(孙雪娇)1,2, Yu Cui(崔宇)1,2, Feng Gao(高峰)1,†, Zhongjun Xue(薛中军)2, Shuwen Zhao(赵书文)2, Dongzhou Ding(丁栋舟)2, Fan Yang(杨帆)3, and Yi-Yang Sun(孙宜阳)2,‡
1 School of Physics, Changchun Normal University, Changchun 130032, China;
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
3 Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China
Abstract  Lu$_{2}$SiO$_{5}$:Ce (LSO:Ce) serving as a core material for radiation detectors, plays a crucial role in the design and development of positron emission tomography (PET) devices. Experiment has confirmed that low concentration of Al doping can significantly enhance the light yield, decay time, rise time, energy resolution, and afterglow level of the LSO:Ce crystals. The mechanisms regarding the lattice site occupancy of Al in LSO, while closely associated with the performance improvements, are not yet fully understood. Particularly, it is unclear either the ionic radius or the chemical valence plays a more critical role in determining the site occupancy. In this study, we utilized first-principles calculations based on density functional theory (DFT) to study the lattice site occupancy of Al in LSO crystals and to explore their impact on the electronic structure. Our results indicate that with changes in the growth environment, as reflected by the atomic chemical potentials, Al can occupy either the Si sites or the Lu$_2$ sites, and it is not inclined to occupy the Lu$_1$ sites. The doping of Al at the Si site introduces a shallow acceptor level, which may contribute to the suppression of trap concentration and affect the ratio of Ce$^{3+}$ to Ce$^{4+}$ within the crystal, thereby influencing its scintillation properties.
Keywords:  sincitillation materials      silicates      defects      first-principles calculations  
Received:  12 January 2025      Revised:  08 April 2025      Accepted manuscript online:  09 May 2025
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  29.40.Mc (Scintillation detectors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3503900) and the National Natural Science Foundation of China (Grant No. 12305212).
Corresponding Authors:  Feng Gao, Yi-Yang Sun     E-mail:  5234110@qq.com;yysun@mail.sic.ac.cn

Cite this article: 

Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳) Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence 2025 Chin. Phys. B 34 096101

[1] Melcher C and Schweitzer J 1992 IEEE Trans. Nucl. Sci. 39 502
[2] Doshi N K, Shao Y, Silverman R W and Cherry S R 2000 Med. Phys. 27 1535
[3] Lecoq P 2016 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 809 130
[4] Weber M J 2002 Journal of Luminescence 100 35
[5] Di Francesco A, Bugalho R, Oliveira L, Pacher L, Rivetti A, Rolo M, Silva J, Silva R and Varela J 2016 Journal of Instrumentation 11 C03042
[6] Surti S and Karp J S 2016 Physica Medica 32 12
[7] Melcher C, Koschan M, Zhuravleva M, Wu Y, Rothfuss H, Meng F, Tyagi M, Donnald S, Yang K, Hayward J et al. 2016 Scintillator design via codoping Proceedings of International Symposium on Radiation Detectors and Their Uses p. 020001
[8] Cooke D, Mcclellan K J, Bennett B L, Roper J, Whittaker M T, Muenchausen R E and Sze R 2000 J. Appl. Phys. 88 7360
[9] Kimble T, ChouMand Chai B H 2002 Scintillation properties of LYSO crystals IEEE Nuclear Science Symposium Conference Record, Vol. 3 (IEEE) pp. 1434-1437
[10] Spurrier M A, Szupryczynski P, Yang K, Carey A A and Melcher C L 2008 IEEE Trans. Nucl. Sci. 55 1178
[11] Blahuta S, Bessiere A, Viana B, Dorenbos P and Ouspenski V 2013 IEEE Trans. Nucl. Sci. 60 3134
[12] Yang K, Melcher C L, Rack P D and Eriksson L A 2009 IEEE Trans. Nucl. Sci. 56 2960
[13] Wu Y, Koschan M, Li Q, Greeley I and Melcher C L 2018 Journal of Crystal Growth 498 362
[14] Cai J and Yeung Y y 2023 Phys. Rev. B 107 085149
[15] Xue Z, Chen L, Zhao S, Yang F, An R, Wang L, Sun Y Y, Feng H and Ding D 2023 Crystal Growth & Design 23 4562
[16] Syntfeld-Kazuch A, Moszynski M, Swiderski L, Szczesniak T, Nassalski A, Melcher C L and Spurrier M A 2008 Energy resolution of calcium co-doped LSO:Ce scintillators IEEE Nuclear Science Symposium Conference Record (IEEE) pp. 2744-2750
[17] Shannon R D 1976 Foundations of Crystallography 32 751
[18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[22] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ańgyań J G 2006 J. Chem. Phys. 124 154709
[23] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and Van de Walle C G 2014 Rev. Mod. Phys. 86 253
[24] Zhang S and Northrup J E 1991 Phys. Rev. Lett. 67 2339
[25] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and Van de Walle C G 2014 Rev. Mod. Phys. 86 253
[26] Lu L, Zhang H, Wu X, Shi J and Sun Y Y 2021 Chin. Phys. B 30 096806
[27] Wu X, Ming C, Shi J, Wang H, West D, Zhang S and Sun Y Y 2022 Chin. Phys. Lett. 39 046101
[28] Kobayashi M, Ishii M and Melcher C L 1993 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 335 509
[29] Kamenskikh I, Mikhailin V, Munro I, Petrovykh D, Shaw D, Studenikin P, Vasil’ev A, Zagumennyi I and Zavartsev Y D 1995 Radiation Effects and Defects in Solids 135 391
[30] Lempicki A and Glodo J 1998 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 416 333
[31] Blahuta S, Bessière A, Viana B, Ouspenski V, Mattmann E, Lejay J and Gourier D 2011 Materials 4 1224
[32] Ding D, Feng H, Ren G, Nikl M, Qin L, Pan S and Yang F 2010 IEEE Trans. Nucl. Sci. 57 1272
[33] Melcher C L, Friedrich S, Cramer S P, Spurrier M A, Szupryczynski P and Nutt R 2005 IEEE Trans. Nucl. Sci. 52 1809
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[4] Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation
Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光). Chin. Phys. B, 2025, 34(8): 087701.
[5] Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天). Chin. Phys. B, 2025, 34(7): 076801.
[6] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[7] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[8] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[9] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[10] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[11] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[12] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[13] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[14] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[15] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
No Suggested Reading articles found!