Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047104    DOI: 10.1088/1674-1056/adb94d
RAPID COMMUNICATION Prev   Next  

Strain-modulated superconductivity of monolayer Tc2B2

Zhengtao Liu(刘正涛)1, Zihan Zhang(张子涵)1, Hao Song(宋昊)2, Tian Cui(崔田) and Defang Duan(段德芳)2,1
1 Key Laboratory of Material Simulation Methods & Software of Ministry of Education, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Two-dimensional (2D) superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices. Herein, we employ first-principles calculations to predicted a new 2D conventional superconductor, Tc2B2, demonstrating its stable structural configuration. Remarkably, under biaxial strain, the superconducting transition temperature (Tc) of Tc2B2 demonstrates a significant enhancement, achieving 19.5 K under 3{\%} compressive strain and 9.2 K under 11{\%} tensile strain. Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect, which amplifies electron-phonon coupling interactions and consequently elevates Tc. Additionally, the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain. These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.
Keywords:  two-dimensional      superconductivity      strain modulation      first-principles calculation  
Received:  27 January 2025      Revised:  10 February 2025      Accepted manuscript online:  24 February 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.35.Gy (Mechanical properties; surface strains)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Kc (Phonons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274169, 12122405, and 52072188), the National Key Research and Development Program of China (Grant No. 2022YFA1402304), the Program for Science and Technology Innovation Team in Zhejiang Province, China (Grant No. 2021R01004), and the Fundamental Research Funds for the Central Universities. Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University and TianHe-1(A) at the National Supercomputer Center in Tianjin.
Corresponding Authors:  Defang Duan     E-mail:  duandf@jlu.edu.cn

Cite this article: 

Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳) Strain-modulated superconductivity of monolayer Tc2B2 2025 Chin. Phys. B 34 047104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang H, Huang J X, Wang Y W, Liu R, Huai X L, Jiang J J and Anfuso C 2018 Opt. Commun. 406 3
[3] Li H D, Luo T Y, Zhang S F, Sun Z J, He X, Zhang W F and Chang H X 2021 Energy&Environ. Mater. 4 46
[4] Zhang X, Shao K, Yan C, Qin R, Lu Z, Geng H, Xu T and Ju L 2021 Mater. Design 200 109452
[5] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 109452
[6] Tao H, Fan Q, Ma T, Liu S, Gysling H, Texter J, Guo F and Sun Z 2020 Prog. Mater. Sci. 111 100637
[7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[8] Li W, Huang J, Li X, Zhao S, Lu J, Han Z V and Wang H 2021 Mater. Today Phys. 21 100504
[9] Bekaert J, Petrov M, Aperis A, Oppeneer P M and Milosevic M V 2019 Phys. Rev. Lett. 123 077001
[10] Yang S X, Chen Y J and Jiang C B 2021 Infomat. 3 397
[11] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[12] Xie H, Wang H, Qin F, Han W, Wang S, Wang Y, Tian F and Duan D 2023 Matter Radiat. Extrem. 8 058404
[13] Guo Z, Li X, Bergara A, Ding S, Zhang X and Yang G 2023 Matter Radiat. Extrem. 8 068401
[14] Chen C H, Lan Y S, Huang A and Jeng H T 2024 Nanoscale Horiz. 9 148
[15] Ma L, Wang L, Yuan Y, Guo H and Wang H 2023 Chin. Phys. Lett. 40 086201
[16] Wang R, Sun Y, Zhang F, Zheng F, Fang Y, Wu S, Dong H, Wang C Z, Antropov V and Ho K M 2022 Inorg. Chem. 61 18154
[17] Tao X, Yang A, Quan Y, Wan B, Yang S and Zhang P 2024 Phys. Chem. Chem. Phys. 26 16963
[18] Yan L, Bo T, Liu P F, Zhou L J, Zhang J R, Tang M H, Xiao Y G and Wang B T 2020 J. Mater. Chem. C 8 1704
[19] Yan L, Bo T, Zhang W X, Liu P F, Lu Z S, Xiao Y G, Tang M H and Wang B T 2019 Phys. Chem. Chem. Phys. 21 15327
[20] Song B Y, Zhou Y, Yang H M, Liao J H, Yang L M, Yang X B and Ganz E 2019 J. Am. Chem. Soc. 141 3630
[21] Han Y L, Li Y P, Yang L, Liu H D, Jiao D, Wang B T, Lu H Y and Zhang P 2023 Mater. Today Phys. 30 100954
[22] Yan L, Bo T, Liu P F, Wang B T, Xiao Y G and Tang M H 2019 J. Mater. Chem. C 7 2589
[23] Qu Z Y, Lin S Y, Xu M L, Hao J, Shi J M, Cui W W and Li Y W 2019 J. Mater. Chem. C 7 11184
[24] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[25] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Grimme S 2006 J. Comput. Chem. 27 1787
[29] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A Dal, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502
[30] Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306
[31] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[33] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[34] Lifshitz I M 1960 Sov. Phys. JETP 11 1130
[35] Aoki D, Seyfarth G, Pourret A, Gourgout A, McCollam A, Bruin J A N, Krupko Y and Sheikin I 2016 Phys. Rev. Lett. 116 037202
[36] Liu C, Kondo T, Fernandes R M, Palczewski A D, Mun E D, Ni N, Thaler A N, Bostwick A, Rotenberg E, Schmalian, Bud'ko J S L, Canfield P C and Kaminski A 2010 Nat. Phys. 6 419
[37] Zhai H C, Munoz F and Alexandrova A N 2019 J. Mater. Chem. C 7 10700
[38] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140
[39] Ponce S, Margine E, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[1] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[2] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[3] High-throughput discovery of kagome materials in transition metal oxide monolayers
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪) Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(4): 046801.
[4] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[5] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[6] Emergence of metal-semiconductor phase transition in MX2 (M =Ni, Pd, Pt; X =S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[7] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[8] Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties
Zi-Yi Tian(田子弈), Si-Yu Li(李思宇), Hai-Tao Zhou(周海涛), Yu-Hang Jiang(姜宇航), and Jin-Hai Mao(毛金海). Chin. Phys. B, 2025, 34(2): 027301.
[9] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[10] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[11] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[12] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[13] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[14] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[15] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
No Suggested Reading articles found!