1 Key Laboratory of Material Simulation Methods & Software of Ministry of Education, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract Two-dimensional (2D) superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices. Herein, we employ first-principles calculations to predicted a new 2D conventional superconductor, TcB, demonstrating its stable structural configuration. Remarkably, under biaxial strain, the superconducting transition temperature () of TcB demonstrates a significant enhancement, achieving 19.5 K under 3{\%} compressive strain and 9.2 K under 11{\%} tensile strain. Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect, which amplifies electron-phonon coupling interactions and consequently elevates . Additionally, the presence of the Lifshitz transition results in a more pronounced rise in under compressive strain compared to tensile strain. These insights offer important theoretical guidance for designing 2D superconductors with high- through strain modulation.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274169, 12122405, and 52072188), the National Key Research and Development Program of China (Grant No. 2022YFA1402304), the Program for Science and Technology Innovation Team in Zhejiang Province, China (Grant No. 2021R01004), and the Fundamental Research Funds for the Central Universities. Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University and TianHe-1(A) at the National Supercomputer Center in Tianjin.
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳) Strain-modulated superconductivity of monolayer Tc2B2 2025 Chin. Phys. B 34 047104
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Zhang H, Huang J X, Wang Y W, Liu R, Huai X L, Jiang J J and Anfuso C 2018 Opt. Commun. 406 3 [3] Li H D, Luo T Y, Zhang S F, Sun Z J, He X, Zhang W F and Chang H X 2021 Energy&Environ. Mater. 4 46 [4] Zhang X, Shao K, Yan C, Qin R, Lu Z, Geng H, Xu T and Ju L 2021 Mater. Design 200 109452 [5] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 109452 [6] Tao H, Fan Q, Ma T, Liu S, Gysling H, Texter J, Guo F and Sun Z 2020 Prog. Mater. Sci. 111 100637 [7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [8] Li W, Huang J, Li X, Zhao S, Lu J, Han Z V and Wang H 2021 Mater. Today Phys. 21 100504 [9] Bekaert J, Petrov M, Aperis A, Oppeneer P M and Milosevic M V 2019 Phys. Rev. Lett. 123 077001 [10] Yang S X, Chen Y J and Jiang C B 2021 Infomat. 3 397 [11] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [12] Xie H, Wang H, Qin F, Han W, Wang S, Wang Y, Tian F and Duan D 2023 Matter Radiat. Extrem. 8 058404 [13] Guo Z, Li X, Bergara A, Ding S, Zhang X and Yang G 2023 Matter Radiat. Extrem. 8 068401 [14] Chen C H, Lan Y S, Huang A and Jeng H T 2024 Nanoscale Horiz. 9 148 [15] Ma L, Wang L, Yuan Y, Guo H and Wang H 2023 Chin. Phys. Lett. 40 086201 [16] Wang R, Sun Y, Zhang F, Zheng F, Fang Y, Wu S, Dong H, Wang C Z, Antropov V and Ho K M 2022 Inorg. Chem. 61 18154 [17] Tao X, Yang A, Quan Y, Wan B, Yang S and Zhang P 2024 Phys. Chem. Chem. Phys. 26 16963 [18] Yan L, Bo T, Liu P F, Zhou L J, Zhang J R, Tang M H, Xiao Y G and Wang B T 2020 J. Mater. Chem. C 8 1704 [19] Yan L, Bo T, Zhang W X, Liu P F, Lu Z S, Xiao Y G, Tang M H and Wang B T 2019 Phys. Chem. Chem. Phys. 21 15327 [20] Song B Y, Zhou Y, Yang H M, Liao J H, Yang L M, Yang X B and Ganz E 2019 J. Am. Chem. Soc. 141 3630 [21] Han Y L, Li Y P, Yang L, Liu H D, Jiao D, Wang B T, Lu H Y and Zhang P 2023 Mater. Today Phys. 30 100954 [22] Yan L, Bo T, Liu P F, Wang B T, Xiao Y G and Tang M H 2019 J. Mater. Chem. C 7 2589 [23] Qu Z Y, Lin S Y, Xu M L, Hao J, Shi J M, Cui W W and Li Y W 2019 J. Mater. Chem. C 7 11184 [24] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [25] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Grimme S 2006 J. Comput. Chem. 27 1787 [29] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A Dal, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502 [30] Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306 [31] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757 [32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [33] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033 [34] Lifshitz I M 1960 Sov. Phys. JETP 11 1130 [35] Aoki D, Seyfarth G, Pourret A, Gourgout A, McCollam A, Bruin J A N, Krupko Y and Sheikin I 2016 Phys. Rev. Lett. 116 037202 [36] Liu C, Kondo T, Fernandes R M, Palczewski A D, Mun E D, Ni N, Thaler A N, Bostwick A, Rotenberg E, Schmalian, Bud'ko J S L, Canfield P C and Kaminski A 2010 Nat. Phys. 6 419 [37] Zhai H C, Munoz F and Alexandrova A N 2019 J. Mater. Chem. C 7 10700 [38] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140 [39] Ponce S, Margine E, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.