Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭)1,†, Kun Zhou(周琨)1,†, Yingjian Li(李英健)1, Chenhao Yi(易晨浩)2, Muhammad Faizan1, Yuhao Fu(付钰豪)3,4, Xinjiang Wang(王新江)1,‡, and Lijun Zhang(张立军)1,4
1 State Key Laboratory of Integrated Optoelectronics Key Laboratory of Automobile Materials of the Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130012, China; 2 Jiangxi Guanyi Grinding Co., Ltd., Fengxin 330700, China; 3 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 4 International Center of Computational Method and Software, Jilin University, Changchun 130012, China
Abstract Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance. However, it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion. In this study, we propose a coefficient of thermal expansion (CTE) calculation scheme based on self-consistent phonon theory, incorporating the fourth-order anharmonicity. We selected four structures (Si, CaZrF, SrTiO, NaBr) to investigate high-order anharmonicity's impact on their CTEs, based on bonding types. The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory, aligning closely with experimental data. Furthermore, we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE, with this effect primarily manifesting in variations of the Grüneisen parameter. Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62125402).
Corresponding Authors:
Xinjiang Wang
E-mail: xinjiang_wang@jlu.edu.cn
Cite this article:
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军) Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective 2025 Chin. Phys. B 34 046301
[1] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496 [2] Chatterji T, Zbiri M and Hansen T C 2011 Appl. Phys. Lett. 98 181911 [3] Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503 [4] Ritz E T and Benedek N A 2018 Phys. Rev. Lett. 121 255901 [5] Lu T, Liu S L, Sun Y H, Wang W H and Pan M X 2022 Chin. Phys. Lett. 39 036401 [6] He J C, Pan Z, Su D, Shen X D, Zhang J, Lu D B, Zhao H T, Cong J Z, Liu E K, Long Y W and Sun Y 2023 Chin. Phys. Lett. 40 066501 [7] Hao Y, Xie H, Zeng G, Yuan H, Hu Y, Guo J, Gao Q, Chao M, Ren X and Liang E J 2022 Chin. Phys. B 31 046502 [8] Allen P B 2015 Phys. Rev. B 92 064106 [9] Ritz E T, Li S J and Benedek N A 2019 J. Appl. Phys. 126 171102 [10] Aierken Y, Ç akır D, Sevik C and Peeters F M 2015 Phys. Rev. B 92 081408 [11] Zhang Y, Mu H, Cai Y, Wang X, Zhou K, Tian F, Fu Y and Zhang L 2023 Chin. Phys. B 32 056302 [12] Shen Y, Saunders C N, Bernal C M, Abernathy D L, Manley M E and Fultz B 2020 Phys. Rev. Lett. 125 085504 [13] Tadano T, Gohda Y and Tsuneyuki S 2015 Phys. Rev. Lett. 114 095501 [14] Debernardi A, Baroni S and Molinari E 1995 Phys. Rev. Lett. 75 1819 [15] Li W and Mingo N 2014 Phys. Rev. B 90 094302 [16] Narasimhan S and Vanderbilt D 1991 Phys. Rev. B 43 4541 [17] Esfarjani K and Stokes H T 2008 Phys. Rev. B 77 144112 [18] Hellman O, Steneteg P, Abrikosov I A and Simak S I 2013 Phys. Rev. B 87 104111 [19] Hellman O and Abrikosov I A 2013 Phys. Rev. B 88 144301 [20] Mu H, Zhang Y, Zou H, Tian F, Fu Y and Zhang L 2023 J. Phys. Chem. Lett. 14 190 [21] Masuki R, Nomoto T, Arita R and Tadano T 2022 Phys. Rev. B 105 064112 [22] Oba Y, Tadano T, Akashi R and Tsuneyuki S 2019 Phys. Rev. Mater. 3 033601 [23] Hooton D J 1958 Philosophical Magazine 3 49 [24] Werthamer N R 1970 Phys. Rev. B 1 572 [25] Zhou F, NielsonW, Xia Y and Ozoliņ š V 2019 Phys. Rev. B 100 184308 [26] Zhou F, Sadigh B, Åberg D, Xia Y and Ozoliņs V 2019 Phys. Rev. B 100 184309 [27] Zhao Y, Lian C, Zeng S, Dai Z, Meng S and Ni J 2020 Phys. Rev. B 101 184303 [28] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301 [29] Grüneisen E 1912 Annalen der Physik 344 257 [30] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115 [31] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [33] Blöchl P E 1994 Phys. Rev. B 50 17953 [34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [36] Sun T, Zhang D B andWentzcovitch R M 2014 Phys. Rev. B 89 094109 [37] Zhou F, Nielson W, Xia Y and Ozoliņ š V 2014 Phys. Rev. Lett. 113 185501 [38] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 [39] Okada Y and Tokumaru Y 1984 J. Appl. Phys. 56 314 [40] De Ligny D and Richet P 1996 Phys. Rev. B 53 3013 [41] Rapp J E and Merchant H D 1973 J. Appl. Phys. 44 3919 [42] Hancock J C, Chapman K W, Halder G J, Morelock C R, Kaplan B S, Gallington L C, Bongiorno A, Han C, Zhou S and Wilkinson A P 2015 Chem. Mater. 27 3912 [43] Müller P C, Ertural C, Hempelmann J and Dronskowski R 2021 J. Phys. Chem. C 125 7959 [44] Argaman U, Eidelstein E, Levy O and Makov G 2016 Phys. Rev. B 94 174305 [45] Middelmann T, Walkov A, Bartl G and Schödel R 2015 Phys. Rev. B 92 174113 [46] Giddy A P, Dove M T, Pawley G S and Heine V 1993 Acta Crystallogr A Found Crystallogr 49 697 [47] Gupta M K, Singh B, Mittal R and Chaplot S L 2018 Phys. Rev. B 98 014301 [48] Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L and Xing X 2016 J. Am. Chem. Soc. 138 14530 [49] Rao A S M, Narender K, Rao K G K and Krishna N G 2013 JMP 04 208
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.