Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046301    DOI: 10.1088/1674-1056/adb94c
RAPID COMMUNICATION Prev   Next  

Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective

Tianxu Zhang(张天旭)1,†, Kun Zhou(周琨)1,†, Yingjian Li(李英健)1, Chenhao Yi(易晨浩)2, Muhammad Faizan1, Yuhao Fu(付钰豪)3,4, Xinjiang Wang(王新江)1,‡, and Lijun Zhang(张立军)1,4
1 State Key Laboratory of Integrated Optoelectronics Key Laboratory of Automobile Materials of the Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130012, China;
2 Jiangxi Guanyi Grinding Co., Ltd., Fengxin 330700, China;
3 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
4 International Center of Computational Method and Software, Jilin University, Changchun 130012, China
Abstract  Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance. However, it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion. In this study, we propose a coefficient of thermal expansion (CTE) calculation scheme based on self-consistent phonon theory, incorporating the fourth-order anharmonicity. We selected four structures (Si, CaZrF6, SrTiO3, NaBr) to investigate high-order anharmonicity's impact on their CTEs, based on bonding types. The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory, aligning closely with experimental data. Furthermore, we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE, with this effect primarily manifesting in variations of the Grüneisen parameter. Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.
Keywords:  high-order anharmonicity      Grüneisen parameter      thermal expansion      first-principles calculations  
Received:  17 January 2025      Revised:  22 February 2025      Accepted manuscript online:  24 February 2025
PACS:  63.20.dk (First-principles theory)  
  65.40.De (Thermal expansion; thermomechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62125402).
Corresponding Authors:  Xinjiang Wang     E-mail:  xinjiang_wang@jlu.edu.cn

Cite this article: 

Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军) Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective 2025 Chin. Phys. B 34 046301

[1] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496
[2] Chatterji T, Zbiri M and Hansen T C 2011 Appl. Phys. Lett. 98 181911
[3] Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503
[4] Ritz E T and Benedek N A 2018 Phys. Rev. Lett. 121 255901
[5] Lu T, Liu S L, Sun Y H, Wang W H and Pan M X 2022 Chin. Phys. Lett. 39 036401
[6] He J C, Pan Z, Su D, Shen X D, Zhang J, Lu D B, Zhao H T, Cong J Z, Liu E K, Long Y W and Sun Y 2023 Chin. Phys. Lett. 40 066501
[7] Hao Y, Xie H, Zeng G, Yuan H, Hu Y, Guo J, Gao Q, Chao M, Ren X and Liang E J 2022 Chin. Phys. B 31 046502
[8] Allen P B 2015 Phys. Rev. B 92 064106
[9] Ritz E T, Li S J and Benedek N A 2019 J. Appl. Phys. 126 171102
[10] Aierken Y, Ç akır D, Sevik C and Peeters F M 2015 Phys. Rev. B 92 081408
[11] Zhang Y, Mu H, Cai Y, Wang X, Zhou K, Tian F, Fu Y and Zhang L 2023 Chin. Phys. B 32 056302
[12] Shen Y, Saunders C N, Bernal C M, Abernathy D L, Manley M E and Fultz B 2020 Phys. Rev. Lett. 125 085504
[13] Tadano T, Gohda Y and Tsuneyuki S 2015 Phys. Rev. Lett. 114 095501
[14] Debernardi A, Baroni S and Molinari E 1995 Phys. Rev. Lett. 75 1819
[15] Li W and Mingo N 2014 Phys. Rev. B 90 094302
[16] Narasimhan S and Vanderbilt D 1991 Phys. Rev. B 43 4541
[17] Esfarjani K and Stokes H T 2008 Phys. Rev. B 77 144112
[18] Hellman O, Steneteg P, Abrikosov I A and Simak S I 2013 Phys. Rev. B 87 104111
[19] Hellman O and Abrikosov I A 2013 Phys. Rev. B 88 144301
[20] Mu H, Zhang Y, Zou H, Tian F, Fu Y and Zhang L 2023 J. Phys. Chem. Lett. 14 190
[21] Masuki R, Nomoto T, Arita R and Tadano T 2022 Phys. Rev. B 105 064112
[22] Oba Y, Tadano T, Akashi R and Tsuneyuki S 2019 Phys. Rev. Mater. 3 033601
[23] Hooton D J 1958 Philosophical Magazine 3 49
[24] Werthamer N R 1970 Phys. Rev. B 1 572
[25] Zhou F, NielsonW, Xia Y and Ozoliņ š V 2019 Phys. Rev. B 100 184308
[26] Zhou F, Sadigh B, Åberg D, Xia Y and Ozoliņs V 2019 Phys. Rev. B 100 184309
[27] Zhao Y, Lian C, Zeng S, Dai Z, Meng S and Ni J 2020 Phys. Rev. B 101 184303
[28] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301
[29] Grüneisen E 1912 Annalen der Physik 344 257
[30] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[31] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Sun T, Zhang D B andWentzcovitch R M 2014 Phys. Rev. B 89 094109
[37] Zhou F, Nielson W, Xia Y and Ozoliņ š V 2014 Phys. Rev. Lett. 113 185501
[38] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[39] Okada Y and Tokumaru Y 1984 J. Appl. Phys. 56 314
[40] De Ligny D and Richet P 1996 Phys. Rev. B 53 3013
[41] Rapp J E and Merchant H D 1973 J. Appl. Phys. 44 3919
[42] Hancock J C, Chapman K W, Halder G J, Morelock C R, Kaplan B S, Gallington L C, Bongiorno A, Han C, Zhou S and Wilkinson A P 2015 Chem. Mater. 27 3912
[43] Müller P C, Ertural C, Hempelmann J and Dronskowski R 2021 J. Phys. Chem. C 125 7959
[44] Argaman U, Eidelstein E, Levy O and Makov G 2016 Phys. Rev. B 94 174305
[45] Middelmann T, Walkov A, Bartl G and Schödel R 2015 Phys. Rev. B 92 174113
[46] Giddy A P, Dove M T, Pawley G S and Heine V 1993 Acta Crystallogr A Found Crystallogr 49 697
[47] Gupta M K, Singh B, Mittal R and Chaplot S L 2018 Phys. Rev. B 98 014301
[48] Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L and Xing X 2016 J. Am. Chem. Soc. 138 14530
[49] Rao A S M, Narender K, Rao K G K and Krishna N G 2013 JMP 04 208
[1] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[2] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[3] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[4] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[5] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[6] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[7] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[8] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[9] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[10] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
[11] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[12] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[13] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[14] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[15] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
No Suggested Reading articles found!