Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰)1,†, Rui-Zi Zhang(张瑞梓)2,†, Jinbo Pan(潘金波)2,3, Ping Chen(陈平)1,‡, and Shixuan Du(杜世萱)2,3,4,§
1 Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Two-dimensional (2D) moiré superlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle. Here, we report a metal-semiconductor phase transition in homojunction moiré superlattices of NiS and PtTe with large twist angles based on high-throughput screening of 2D materials (, Pd, Pt; , Se, Te) via density functional theory (DFT) calculations. Firstly, the calculations for different stacking configurations (AA, AB and AC) reveal that AA stacking ones are stable for all the bilayer . The metallic or semiconducting properties of these 2D materials remain invariable for different stacking without twisting except for NiS and PtTe. For the twisted configurations, NiS transfers from metal to semiconductor when the twist angles are 21.79, 27.79, 32.20 and 60. PtTe exhibits a similar transition at 60. The phase transition is due to the weakened d-p orbital hybridization around the Fermi level as the interlayer distance increases in the twisted configurations. Further calculations of untwisted bilayers with increasing interlayer distance demonstrate that all the materials undergo metal-semiconductor phase transition with the increased interlayer distance because of the weakened d-p orbital hybridization. These findings provide fundamental insights into tuning the electronic properties of moiré superlattices with large twist angles.
(Metal-insulator transitions and other electronic transitions)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52472153, 11704081, and 62488201), the National Key Research and Development Program of China (Grant No. 2022YFA1204100), National Science and Technology Innovation Talent Cultivation Program (Grant No. 2023BZRC016), Guangxi Natural Science Foundation (Grant No. 2020GXNSFAA297182), and the special fund for “Guangxi Bagui Scholars.”
Corresponding Authors:
Ping Chen, Shixuan Du
E-mail: chenping@gxu.edu.cn;sxdu@iphy.ac.cn
Cite this article:
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱) Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices 2025 Chin. Phys. B 34 037302
[1] Stepanov P, Das I, Lu X B, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 [2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [3] Saito Y, Ge J Y, Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926 [4] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [5] Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V and Zhang G Y 2020 Nat. Phys. 16 520 [6] Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221 [7] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [8] Lin J X, Zhang Y H, Morissette E,Wang Z, Liu S, Rhodes D,Watanabe K, Taniguchi T, Hone J and Li J I A 2022 Science 375 437 [9] Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [10] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [11] Kim D, Kang B, Choi Y B, Watanabe K, Taniguchi T, Lee G H, Cho G Y and Kim Y 2023 Nano Lett. 23 163 [12] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O,Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801 [13] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 [14] Angeli M and MacDonald A H 2021 Proc. Natl. Acad. Sci. USA 118 e2021826118 [15] Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E and LeRoy B J 2020 Nat. Phys. 16 1093 [16] Regan E C, Wang D Q, Jin C H, Utama M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A and Wang F 2020 Nature 579 359 [17] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N and Dean C R 2020 Nat. Mater. 19 861 [18] Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353 [19] Xu Y, Kang K F, Watanabe K, Taniguchi T, Mak K F and Shan J 2022 Nat. Nanotechnol. 17 934 [20] Constantinescu G C and Hine N D M 2015 Phys. Rev. B 91 195416 [21] Lu N, Guo H Y, Zhuo Z W, Wang L, Wu X J and Zeng X C 2017 Nanoscale 9 19131 [22] Klebl L, Xu Q, Fischer A, Xian L, Claassen M, Rubio A and Kennes D M 2022 Electron. Struct. 4 014004 [23] Xu Q L, Guo Y Z and Xian L D 2022 2D Mater. 9 014005 [24] Ahn J, Kang S H, Yoon M and Krogel J T 2024 Phys. Rev. Res. 6 033177 [25] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402 [26] Ghasemi F, Taghavimendi R and Bakhshayeshi A 2020 Opt. Quantum Electron. 52 492 [27] Jakhar M, Singh J, Kumar A and Pandey R 2020 J. Phys. Chem. C 124 26565 [28] Zhang L, Yang T, Arramel, Feng Y P, Wee A T S and Wang Z 2022 Nanoscale 14 7650 [29] Ahmad S 2017 Mater. Chem. Phys. 198 162 [30] Mohammed H A H, Dongho-Nguimdo G M and Joubert D P 2019 Mater. Today Commun. 21 100661 [31] Liu C, Lian C S, Liao M H, Wang Y, Zhong Y, Ding C, Li W, Song C L, He K, Ma X C, Duan W H, Zhang D, Xu Y, Wang L L and Xue Q K 2018 Phys. Rev. Mater. 2 094001 [32] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [34] Blochl P E 1994 Phys. Rev. B 50 17953 [35] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 [36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [37] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [38] Carr S, Fang S and Kaxiras E 2020 Nat. Rev. Mater. 5 748 [39] Song H Q, Liu Z and Zhang D B 2019 Phys. Lett. A 383 2628 [40] Jung J, Raoux A, Qiao Z H and MacDonald A H 2014 Phys. Rev. B 89 205414 [41] Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401 [42] Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan ZW, Jiang J, Li R B, Chen L D, He J and Shi X 2020 Science 369 542 [43] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801 [44] Li X N, Lv Y W, Tong Q J, Liao L, Li K L and Jiang C Z 2023 IEEE Electron Device Lett. 44 544
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.