Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 037302    DOI: 10.1088/1674-1056/ada7d9
Special Issue: TOPICAL REVIEW — Moiré physics in two-dimensional materials
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices

Jie Li(李杰)1,†, Rui-Zi Zhang(张瑞梓)2,†, Jinbo Pan(潘金波)2,3, Ping Chen(陈平)1,‡, and Shixuan Du(杜世萱)2,3,4,§
1 Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Two-dimensional (2D) moiré superlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle. Here, we report a metal-semiconductor phase transition in homojunction moiré superlattices of NiS2 and PtTe2 with large twist angles based on high-throughput screening of 2D materials MX2 (M=Ni, Pd, Pt; X=S, Se, Te) via density functional theory (DFT) calculations. Firstly, the calculations for different stacking configurations (AA, AB and AC) reveal that AA stacking ones are stable for all the bilayer MX2. The metallic or semiconducting properties of these 2D materials remain invariable for different stacking without twisting except for NiS2 and PtTe2. For the twisted configurations, NiS2 transfers from metal to semiconductor when the twist angles are 21.79, 27.79, 32.20 and 60. PtTe2 exhibits a similar transition at 60. The phase transition is due to the weakened d-p orbital hybridization around the Fermi level as the interlayer distance increases in the twisted configurations. Further calculations of untwisted bilayers with increasing interlayer distance demonstrate that all the materials undergo metal-semiconductor phase transition with the increased interlayer distance because of the weakened d-p orbital hybridization. These findings provide fundamental insights into tuning the electronic properties of moiré superlattices with large twist angles.
Keywords:  moiré superlattices      first-principles calculations      metal-semiconductor phase transition  
Received:  17 October 2024      Revised:  13 December 2024      Accepted manuscript online:  09 January 2025
PACS:  73.21.Cd (Superlattices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52472153, 11704081, and 62488201), the National Key Research and Development Program of China (Grant No. 2022YFA1204100), National Science and Technology Innovation Talent Cultivation Program (Grant No. 2023BZRC016), Guangxi Natural Science Foundation (Grant No. 2020GXNSFAA297182), and the special fund for “Guangxi Bagui Scholars.”
Corresponding Authors:  Ping Chen, Shixuan Du     E-mail:  chenping@gxu.edu.cn;sxdu@iphy.ac.cn

Cite this article: 

Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱) Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices 2025 Chin. Phys. B 34 037302

[1] Stepanov P, Das I, Lu X B, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[3] Saito Y, Ge J Y, Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926
[4] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[5] Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V and Zhang G Y 2020 Nat. Phys. 16 520
[6] Liu X M, Hao Z Y, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221
[7] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[8] Lin J X, Zhang Y H, Morissette E,Wang Z, Liu S, Rhodes D,Watanabe K, Taniguchi T, Hone J and Li J I A 2022 Science 375 437
[9] Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[10] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[11] Kim D, Kang B, Choi Y B, Watanabe K, Taniguchi T, Lee G H, Cho G Y and Kim Y 2023 Nano Lett. 23 163
[12] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O,Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801
[13] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[14] Angeli M and MacDonald A H 2021 Proc. Natl. Acad. Sci. USA 118 e2021826118
[15] Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E and LeRoy B J 2020 Nat. Phys. 16 1093
[16] Regan E C, Wang D Q, Jin C H, Utama M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A and Wang F 2020 Nature 579 359
[17] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N and Dean C R 2020 Nat. Mater. 19 861
[18] Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353
[19] Xu Y, Kang K F, Watanabe K, Taniguchi T, Mak K F and Shan J 2022 Nat. Nanotechnol. 17 934
[20] Constantinescu G C and Hine N D M 2015 Phys. Rev. B 91 195416
[21] Lu N, Guo H Y, Zhuo Z W, Wang L, Wu X J and Zeng X C 2017 Nanoscale 9 19131
[22] Klebl L, Xu Q, Fischer A, Xian L, Claassen M, Rubio A and Kennes D M 2022 Electron. Struct. 4 014004
[23] Xu Q L, Guo Y Z and Xian L D 2022 2D Mater. 9 014005
[24] Ahn J, Kang S H, Yoon M and Krogel J T 2024 Phys. Rev. Res. 6 033177
[25] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402
[26] Ghasemi F, Taghavimendi R and Bakhshayeshi A 2020 Opt. Quantum Electron. 52 492
[27] Jakhar M, Singh J, Kumar A and Pandey R 2020 J. Phys. Chem. C 124 26565
[28] Zhang L, Yang T, Arramel, Feng Y P, Wee A T S and Wang Z 2022 Nanoscale 14 7650
[29] Ahmad S 2017 Mater. Chem. Phys. 198 162
[30] Mohammed H A H, Dongho-Nguimdo G M and Joubert D P 2019 Mater. Today Commun. 21 100661
[31] Liu C, Lian C S, Liao M H, Wang Y, Zhong Y, Ding C, Li W, Song C L, He K, Ma X C, Duan W H, Zhang D, Xu Y, Wang L L and Xue Q K 2018 Phys. Rev. Mater. 2 094001
[32] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[34] Blochl P E 1994 Phys. Rev. B 50 17953
[35] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[37] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[38] Carr S, Fang S and Kaxiras E 2020 Nat. Rev. Mater. 5 748
[39] Song H Q, Liu Z and Zhang D B 2019 Phys. Lett. A 383 2628
[40] Jung J, Raoux A, Qiao Z H and MacDonald A H 2014 Phys. Rev. B 89 205414
[41] Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401
[42] Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan ZW, Jiang J, Li R B, Chen L D, He J and Shi X 2020 Science 369 542
[43] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801
[44] Li X N, Lv Y W, Tong Q J, Liao L, Li K L and Jiang C Z 2023 IEEE Electron Device Lett. 44 544
[1] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[2] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[3] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[4] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[5] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[6] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[7] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[8] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[9] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[10] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
[11] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[12] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[13] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[14] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[15] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
No Suggested Reading articles found!