1 Department of Physics, School of Sciences, Beihua University, Jilin 132013, China; 2 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China
Abstract As an extreme physical condition, high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter, thereby enabling the macroscopic manipulation of material properties. We employed the CALYPSO method to predict the stable structures of RbBC across the pressure range from 0 GPa to 100 GPa and investigated its physical properties through first-principles calculations. Specially, we found four novel structures, namely, 6/mcm-, Amm2-, 1-, and 4/mmm-RbBC. Under pressure conditions, electronic structure calculations reveal that all of them exhibit metallic characteristics. The calculation results of formation enthalpy show that the 6/mcm structure can be synthesized within the pressure range of 0-40 GPa. Specially, the Amm2, , and 4/mmm structures can be synthesized above 4 GPa, 6 GPa, 10 GPa, respectively. Moreover, the estimated Vickers hardness value of 4/mmm-RbBC compound is 47 GPa, suggesting that it is a superhard material. Interestingly, this study uncovers the continuous transformation of the crystal structure of RbBC from a layered configuration to folded and tubular forms, ultimately attaining a stabilized cage-like structure under the pressure span of 0-100 GPa. The application of pressure offers a formidable impetus for the advancement and innovation in condensed matter physics, facilitating the exploration of novel states and functions of matter.
Fund: Project supported by the Jilin Provincial Science and Technology Development Joint Fund Project (Grant No. YDZJ202201ZYTS581). This work is also supported by the Scientific and Technological Research Project of Jilin Provincial Education Department (Grant No. JJKH20240077KJ).
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼) Pressure-driven crystal structure evolution in RbB2C4 compounds 2025 Chin. Phys. B 34 046201
[1] Holzapfel W B 1996 Reports on Progress in Physics 59 29 [2] Mujica A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863 [3] Degtyareva O, MCMahon M I and Nelmes R J 2004 High Press Res. 24 319 [4] Xia H, Parthasarathy G, Luo H, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 6736 [5] Xia H, Duclos S J, Ruoff A L and Vohra Y K 1990 Phys. Rev. Lett. 64 204 [6] Zhu L, Wang Z, Wang Y, Zou G, Mao H and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 751 [7] Mao H and Hemley R J 1994 Rev. Mod. Phys. 66 671 [8] McMahon M I, Gregoryanz E, Lundegaard L F, Loa I, Guillaume C, Nelmes R J, Kleppe A K, Amboage M, Wilhelm H and Jephcoat A P 2007 Proc. Natl. Acad. Sci. USA 104 17297 [9] Tse J S, Desgreniers S, Ohishi Y and Matsuoka T 2012 Sci. Rep. 2 372 [10] Ma Y, Tse J S and Klug D D 2003 Phys. Rev. B 67 140301 [11] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558 [12] Khaliullin R Z, Eshet H, Kühne T D, Behler J and Parrinello M 2011 Nat. Mater. 10 693 [13] Fujii Y, Hase K, Ohishi Y, Fujihisa H, Hamaya N, Takemura K, Shimomura O, Kikegawa T, Amemiya Y and Matsushita T 1989 Phys. Rev. Lett. 63 536 [14] Gregoryanz E, Lundegaard L F, McMahon M I, Guillaume C, Nelmes R J and Mezouar M 2008 Science 320 1054 [15] Gregoryanz E, Degtyareva O, Somayazulu M, Hemley R J and Mao H 2005 Phys. Rev. Lett. 94 185502 [16] Kim E and Chan M H W 2006 Phys. Rev. Lett. 97 115302 [17] Shimizu K, Suhara K, Ikumo M, Eremets M I and Amaya K 1998 Nature 393 767 [18] Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y and Zou G 2008 Phys. Rev. Lett. 101 107002 [19] Chang K J, DacorognaMM, CohenML, Mignot J M, Chouteau G and Martinez G 1985 Phys. Rev. Lett. 54 2375 [20] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182 [21] Matsuoka T and Shimizu K 2009 Nature 458 186 [22] Babaev E, Sudbø A and Ashcroft N W 2004 Nature 431 666 [23] Zhu L, Strobel T A and Cohen R E 2020 Phys. Rev. Lett. 125 127601 [24] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney- Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E and Strobel T A 2023 Phys. Rev. Res. 5 013012 [25] Wang J N, Yan X W and Gao M 2021 Phys. Rev. B 103 144515 [26] Gai T T, Guo P J, Yang H C, Gao Y, Gao M and Lu Z Y 2022 Phys. Rev. B 105 224514 [27] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503 [28] Cui Z, Zhang X, Sun Y, Liu Y and Yang G 2022 Phys. Chem. Chem. Phys. 24 16884 [29] Liu A, Cheng X, Wang X, Zou Y and Zhang M 2023 Phys. Chem. Chem. Phys. 25 20837 [30] Cheng X, Liu A, Wang X, Zou Y, Zhang M and Gao L 2023 J. Alloys Compd. 969 172466 [31] Fang C M, Bauer J, Saillard J Y and Halet J F 2007 J. Solid State Chem. 180 2465 [32] Yan H, Chen L, Wei Z, Zhang M and Wei Q 2020 Vacuum 180 109617 [33] Lazicki A, Yoo C S, Cynn H, Evans W J, Pickett W E, Olamit J, Liu K and Ohishi Y 2007 Phys. Rev. B 75 054507 [34] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [35] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [36] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [40] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [43] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [44] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275 [45] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405 [46] Tian Y, Xu B and Zhao Z 2012 Int J. Refract Metals Hard Mater 33 93 [47] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [48] Degtyareva O 2010 High Press Res. 30 343 [49] Oganov A R, Solozhenko V L, Gatti C, Kurakevych O O and Le Godec Y 2012 J. Superhard Mater. 34 74 [50] Kharabadze S, Meyers M, Tomassetti C R, Margine E R, Mazin I I and Kolmogorov A N 2023 Phys. Chem. Chem. Phys. 25 7344 [51] Milashius V, Pavlyuk V, Dmytriv G and Ehrenberg H 2018 Inorg. Chem. Front. 5 853
Pressure generation under deformation in a large-volume press Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.