Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046201    DOI: 10.1088/1674-1056/adb271
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure-driven crystal structure evolution in RbB2C4 compounds

Jinyu Liu(刘金禹)1, Ailing Liu(刘爱玲)1, Yujia Wang(王雨佳)1, Lili Gao(高丽丽)1, Xiangyi Luo(罗香怡)2,†, and Miao Zhang(张淼)1,‡
1 Department of Physics, School of Sciences, Beihua University, Jilin 132013, China;
2 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China
Abstract  As an extreme physical condition, high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter, thereby enabling the macroscopic manipulation of material properties. We employed the CALYPSO method to predict the stable structures of RbB2C4 across the pressure range from 0 GPa to 100 GPa and investigated its physical properties through first-principles calculations. Specially, we found four novel structures, namely, P63/mcm-, Amm2-, P1-, and I4/mmm-RbB2C4. Under pressure conditions, electronic structure calculations reveal that all of them exhibit metallic characteristics. The calculation results of formation enthalpy show that the P63/mcm structure can be synthesized within the pressure range of 0-40 GPa. Specially, the Amm2, P1, and I4/mmm structures can be synthesized above 4 GPa, 6 GPa, 10 GPa, respectively. Moreover, the estimated Vickers hardness value of I4/mmm-RbB2C4 compound is 47 GPa, suggesting that it is a superhard material. Interestingly, this study uncovers the continuous transformation of the crystal structure of RbB2C4 from a layered configuration to folded and tubular forms, ultimately attaining a stabilized cage-like structure under the pressure span of 0-100 GPa. The application of pressure offers a formidable impetus for the advancement and innovation in condensed matter physics, facilitating the exploration of novel states and functions of matter.
Keywords:  first-principles calculation      high pressure      RbB2C4 compounds      crystal structure prediction  
Received:  02 January 2025      Revised:  28 January 2025      Accepted manuscript online:  05 February 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Jilin Provincial Science and Technology Development Joint Fund Project (Grant No. YDZJ202201ZYTS581). This work is also supported by the Scientific and Technological Research Project of Jilin Provincial Education Department (Grant No. JJKH20240077KJ).
Corresponding Authors:  Xiangyi Luo, Miao Zhang     E-mail:  ???;zhangmiaolmc@126.com

Cite this article: 

Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼) Pressure-driven crystal structure evolution in RbB2C4 compounds 2025 Chin. Phys. B 34 046201

[1] Holzapfel W B 1996 Reports on Progress in Physics 59 29
[2] Mujica A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[3] Degtyareva O, MCMahon M I and Nelmes R J 2004 High Press Res. 24 319
[4] Xia H, Parthasarathy G, Luo H, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 6736
[5] Xia H, Duclos S J, Ruoff A L and Vohra Y K 1990 Phys. Rev. Lett. 64 204
[6] Zhu L, Wang Z, Wang Y, Zou G, Mao H and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 751
[7] Mao H and Hemley R J 1994 Rev. Mod. Phys. 66 671
[8] McMahon M I, Gregoryanz E, Lundegaard L F, Loa I, Guillaume C, Nelmes R J, Kleppe A K, Amboage M, Wilhelm H and Jephcoat A P 2007 Proc. Natl. Acad. Sci. USA 104 17297
[9] Tse J S, Desgreniers S, Ohishi Y and Matsuoka T 2012 Sci. Rep. 2 372
[10] Ma Y, Tse J S and Klug D D 2003 Phys. Rev. B 67 140301
[11] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[12] Khaliullin R Z, Eshet H, Kühne T D, Behler J and Parrinello M 2011 Nat. Mater. 10 693
[13] Fujii Y, Hase K, Ohishi Y, Fujihisa H, Hamaya N, Takemura K, Shimomura O, Kikegawa T, Amemiya Y and Matsushita T 1989 Phys. Rev. Lett. 63 536
[14] Gregoryanz E, Lundegaard L F, McMahon M I, Guillaume C, Nelmes R J and Mezouar M 2008 Science 320 1054
[15] Gregoryanz E, Degtyareva O, Somayazulu M, Hemley R J and Mao H 2005 Phys. Rev. Lett. 94 185502
[16] Kim E and Chan M H W 2006 Phys. Rev. Lett. 97 115302
[17] Shimizu K, Suhara K, Ikumo M, Eremets M I and Amaya K 1998 Nature 393 767
[18] Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y and Zou G 2008 Phys. Rev. Lett. 101 107002
[19] Chang K J, DacorognaMM, CohenML, Mignot J M, Chouteau G and Martinez G 1985 Phys. Rev. Lett. 54 2375
[20] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[21] Matsuoka T and Shimizu K 2009 Nature 458 186
[22] Babaev E, Sudbø A and Ashcroft N W 2004 Nature 431 666
[23] Zhu L, Strobel T A and Cohen R E 2020 Phys. Rev. Lett. 125 127601
[24] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney- Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E and Strobel T A 2023 Phys. Rev. Res. 5 013012
[25] Wang J N, Yan X W and Gao M 2021 Phys. Rev. B 103 144515
[26] Gai T T, Guo P J, Yang H C, Gao Y, Gao M and Lu Z Y 2022 Phys. Rev. B 105 224514
[27] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503
[28] Cui Z, Zhang X, Sun Y, Liu Y and Yang G 2022 Phys. Chem. Chem. Phys. 24 16884
[29] Liu A, Cheng X, Wang X, Zou Y and Zhang M 2023 Phys. Chem. Chem. Phys. 25 20837
[30] Cheng X, Liu A, Wang X, Zou Y, Zhang M and Gao L 2023 J. Alloys Compd. 969 172466
[31] Fang C M, Bauer J, Saillard J Y and Halet J F 2007 J. Solid State Chem. 180 2465
[32] Yan H, Chen L, Wei Z, Zhang M and Wei Q 2020 Vacuum 180 109617
[33] Lazicki A, Yoo C S, Cynn H, Evans W J, Pickett W E, Olamit J, Liu K and Ohishi Y 2007 Phys. Rev. B 75 054507
[34] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[35] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[36] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[40] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[44] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[45] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405
[46] Tian Y, Xu B and Zhao Z 2012 Int J. Refract Metals Hard Mater 33 93
[47] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[48] Degtyareva O 2010 High Press Res. 30 343
[49] Oganov A R, Solozhenko V L, Gatti C, Kurakevych O O and Le Godec Y 2012 J. Superhard Mater. 34 74
[50] Kharabadze S, Meyers M, Tomassetti C R, Margine E R, Mazin I I and Kolmogorov A N 2023 Phys. Chem. Chem. Phys. 25 7344
[51] Milashius V, Pavlyuk V, Dmytriv G and Ehrenberg H 2018 Inorg. Chem. Front. 5 853
[1] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[2] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[3] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[4] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[5] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[6] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[7] First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
Tao Wang(王涛), Ming-Hong Wen(温铭洪), Xin-Xin Zhang(张新欣), Wei-Hua Wang(王伟华), Jia-Mei Liu(刘佳美), Xu-Ying Wang(王旭颖), and Pei-Fang Li(李培芳). Chin. Phys. B, 2025, 34(3): 036104.
[8] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[9] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[10] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[11] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[12] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[13] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[14] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[15] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
No Suggested Reading articles found!