Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097402    DOI: 10.1088/1674-1056/adee04
RAPID COMMUNICATION Prev   Next  

Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)

Jin-Han Tan(谭锦函)1, Na Jiao(焦娜)1, Meng-Meng Zheng(郑萌萌)1,†, Ping Zhang(张平)1,2, and Hong-Yan Lu(路洪艳)1,‡
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Two-dimensional double-layer honeycomb (DLHC) materials are known for their diverse physical properties, but superconductivity has been a notably absent characteristic in this structure. We address this gap by investigating $M_{2}$N$_{2}$ ($M = {\rm Nb}$, Ta) with DLHC structure using first-principles calculations. Our results show that $M_{2}$N$_{2}$ are stable and metallic, exhibiting superconducting behavior. Specifically, Nb$_{2}$N$_{2}$ and Ta$_{2}$N$_{2}$ display superconducting transition temperatures of 6.8 K and 8.8 K, respectively. Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes. Interestingly, two compounds also exhibit non-trivial band topology. Thus, $M_{2}$N$_{2}$ are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.
Keywords:  first-principles calculations      phonon-mediated superconductivity      double-layer honeycomb structure      band topology  
Received:  16 June 2025      Revised:  07 July 2025      Accepted manuscript online:  10 July 2025
PACS:  74.20.Pq (Electronic structure calculations)  
  74.25.-q (Properties of superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074213 and 11574108), the National Key R&D Program of China (Grant No. 2022YFA1403103), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA082), and the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
Corresponding Authors:  Meng-Meng Zheng, Hong-Yan Lu     E-mail:  qfzhmm@163.com;hylu@qfnu.edu.cn

Cite this article: 

Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳) Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta) 2025 Chin. Phys. B 34 097402

[1] Huang Z S, Zhang W X and Zhang W L 2016 Materials 9 716
[2] Faraji M, Bafekry A, Fadlallah M M, Jappor H R, Nguyen C V and Ghergherehchi M 2022 Appl. Surf. Sci 590 152998
[3] Muhsen Almayyali A O, Muhsen H O, Merdan M, Obeid M M and Jappor H R 2021 Physica E 126 114487
[4] Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P and Ting C S 2023 Chin. Phys. Lett. 40 017402
[5] Xia F, Mueller T, Lin Y m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[6] Chen C, Mei W, Wang C, Yang Z, Chen X, Chen X and Liu T 2020 J. Alloys Compd. 826 154122
[7] Bafekry A, Yagmurcukardes M, Akgenc B, Ghergherehchi M and Nguyen C V 2020 J. Phys. D 53 355106
[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[9] Lin Y, Williams T V and Connell J W 2010 J. Phys. Chem. Lett. 1 277
[10] Zhang K, Feng Y,Wang F, Yang Z andWang J 2017 J. Mater. Chem. C 5 11992
[11] Li L H and Chen Y 2016 Adv. Funct. Mater. 26 2594
[12] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428
[13] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[14] Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P and Pirri C 2015 Nano Lett. 15 2510
[15] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[16] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[17] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[18] Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R, Wei J, Tang B Z, Huang W and Zhang H 2014 Adv. Mater. 26 1735
[19] Komsa H P and Krasheninnikov A V 2012 J. Phys. Chem. Lett. 3 3652
[20] Geng D and Yang H Y 2018 Adv. Mater. 30 1800865
[21] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
[22] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[23] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[24] Son S Y, Lee D, Hur J and Kim I T 2017 J. Nanosci. Nanotechnol. 17 7575
[25] Johnson M, Bennett B R, Yang M J, Miller M M and Shanabrook B V 1997 Appl. Phys. Lett. 71 974
[26] Qin L, Zhang Z H, Jiang Z, Fan K, Zhang W H, Tang Q Y, Xia H N, Meng F, Zhang Q, Gu L, West D, Zhang S and Fu Y S 2021 ACS Nano 15 8184
[27] Freeman C L, Claeyssens F, Allan N L and Harding J H 2006 Phys. Rev. Lett. 96 066102
[28] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
[29] Zheng H, Li X B, Chen N K, Xie S Y, TianWQ, Chen Y, Xia H, Zhang S B and Sun H B 2015 Phys. Rev. B 92 115307
[30] Lucking M C, XieW, Choe D H,West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
[31] Mustonen K, Hofer C, Kotrusz P, Markevich A, Hulman M, Mangler C, Susi T, Pennycook T J, Hricovini K, Richter C, Meyer J C, Kotakoski J and Skákalová V 2022 Adv. Mater. 34 2106922
[32] Andryushechkin B V and Pavlova T V 2022 The Journal of Chemical Physics 156 164702
[33] Jiang Z, Li Y, Zhang S and Duan W 2018 Phys. Rev. B 98 081408
[34] Liu C, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[35] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[36] Yi S, Liu G, Wan H, Liu Z, Hu W and Deng H 2021 Appl. Surf. Sci. 550 149392
[37] Bafekry A, Faraji M, Fazeli S, H Khan S, Fadlallah M M, Stampfl C, Ghergherehchi M, Chang G S and Shokri B 2024 J. Phys. Chem. C 128 8016
[38] Jiang H, Zheng L, Liu Z and Wang X 2020 InfoMat 2 1077
[39] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
[40] Yi S, Liu G, Liu Z, HuWand Deng H 2020 J. Phys. Chem. C 124 2978
[41] Bafekry A, Faraji M, Fadlallah M M, Jappor H R, Karbasizadeh S, Ghergherehchi M, Sarsari I A and Ziabari A A 2021 Phys. Chem. Chem. Phys. 23 18752
[42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[43] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[45] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[49] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A and Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[50] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[51] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[52] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y and Matsuda I 2017 Nat. Commun. 8 1007
[53] Bafekry A, Faraji M, Fadlallah M M, Jappor H R, Karbasizadeh S, Ghergherehchi M, Sarsari I A and Ziabari A A 2021 Phys. Chem. Chem. Phys. 23 18752
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[3] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[4] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[5] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[6] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[7] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[8] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[9] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[10] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[11] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[12] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[13] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[14] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[15] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
No Suggested Reading articles found!