Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097304    DOI: 10.1088/1674-1056/ade4af
RAPID COMMUNICATION Prev   Next  

Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers

Wei Chen(陈威)1, Chuhan Tang(唐楚涵)1, Chao-Fei Liu(刘超飞)2, and Mingxing Chen(陈明星)1,3,4†
1 Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China;
2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
3 Hunan Research Center of the Basic Discipline for Quantum Effects and Quantum Technologies, Changsha 410081, China;
4 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract  We investigate the magnetic and topological properties of Mn$_{2}X_{2}$Te$_{5}$ ($X = {\rm Bi}$, Sb) using first-principles calculations. We find that both Mn$_{2}$Bi$_{2}$Te$_{5}$ and Mn$_{2}$Sb$_{2}$Te$_{5}$ bilayers exhibit A-type antiferromagnetic order, which can be understood based on the Goodenough-Kanamori-Anderson rules. We further find that an appropriate hole doping can induce a transition from the A-type antiferromagnetic phase to the ferromagnetic phase in these systems, which also experience a transition from a normal insulator to a quantum anomalous Hall phase. Our study thus demonstrates that tunable magnetism and band topology can be achieved in Mn$_{2}X_{2}$Te$_{5}$, which may be utilized in the design of new functional electronic devices.
Keywords:  two-dimensional (2D) ferromagnetism      first-principles calculations      band topology  
Received:  27 March 2025      Revised:  28 May 2025      Accepted manuscript online:  16 June 2025
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.20.At (Surface states, band structure, electron density of states)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 12174098 and 12574262), and the Major Fundamental Research Program of Hunan Province (Grants No. 2025ZYJ004), and the State Key Laboratory of Powder Metallurgy, Central South University, China.
Corresponding Authors:  Mingxing Chen     E-mail:  mxchen@hunnu.edu.cn

Cite this article: 

Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星) Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers 2025 Chin. Phys. B 34 097304

[1] Burch K S, Mandrus D and Park J G 2018 Nature 563 47
[2] Kurebayashi H, Garcia J H, Khan S, Sinova J and Roche S 2022 Nat. Rev. Phys. 4 150
[3] Li H, Ruan S and Zeng Y J 2019 Adv. Mater. 31 1900065
[4] Wang Q H, Bedoya-Pinto A, Blei M, Dismukes A H, Hamo A, Jenkins S and Santos E J 2022 ACS Nano 16 6960
[5] Ahn Y, Guo X, Son S, Sun Z and Zhao L 2024 Prog. Quantum Electron. 93 100498
[6] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457
[7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y and Zhang X 2017 Nature 546 265
[8] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L and Xu X 2017 Nature 546 270
[9] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L and Xu X 2018 Nat. Nanotechnol. 13 544
[10] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406
[11] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M and Zhang Z 2018 Nat. Nanotechnol. 13 554
[12] Jiang S, Li L,Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[13] Tan C, Xie W Q, Zheng G, Aloufi N, Albarakati S, Algarni M and Wang L 2021 Nano Lett. 21 5599
[14] Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065
[15] Mi M, Zheng X,Wang S, Zhou Y, Yu L, Xiao H andWang Y 2022 Adv. Funct. Mater. 32 2112750
[16] Lu Y, Wang H, Wang L and Yang L 2022 Phys. Rev. B 106 205403
[17] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y and Chen Y P 2023 Adv. Mater. 35 2205714
[18] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z and Xu X 2022 Nat. Nanotechnol. 17 256
[19] Webster L and Yan J A 2018 Phys. Rev. B 98 144411
[20] Wang Y,Wang C, Liang S J, Ma Z, Xu K, Liu X and Miao F 2020 Adv. Mater. 32 2004533
[21] Kong X, Yoon H, Han M J and Liang L 2021 Nanoscale 13 16172
[22] Xun W, Wu C, Sun H, Zhang W, Wu Y Z and Li P 2024 Nano Lett. 24 3541
[23] Yang S, Xu X, Han B, Gu P, Guzman R, Song Y and Ye Y 2023 J. Am. Chem. Soc. 145 28184
[24] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983
[25] Cheng H X, Zhou J, Wang C, Ji W and Zhang Y N 2021 Phys. Rev. B 104 064443
[26] Yu G, Tang C, Tian Z, Zhu Z, Liu P, Pan A, Chen M and Chen X Q 2023 Phys. Rev. B 108 014106
[27] Xu Y, Elcoro L, Song Z D, Wieder B J, Vergniory M G, Regnault N and Bernevig B A 2020 Nature 586 702
[28] Zhang X, Wang X, He T, Wang L, Yu W W, Liu Y and Cheng Z 2023 Sci. Bull. 68 2639
[29] Moore J E. 2010 Nature 464 194
[30] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[31] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[32] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41
[33] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C and Xu Y 2019 Sci. Adv. 5 eaaw5685
[34] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J and Zhang Y 2020 Science 367 895
[35] OtrokovMM, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[36] He K 2020 npj Quantum Mater. 5 90
[37] Zhao Y and Liu Q 2021 Appl. Phys. Lett. 119 060502
[38] Liu C, Wang Y, Yang M, Mao J, Li H, Li Y and Wang Y 2021 Nat. Commun. 12 4647
[39] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J and Wang Y 2020 Nat. Mater. 19 522
[40] Cao L, Han S, Lv Y Y, Wang D, Luo Y C, Zhang Y Y and Chen Y F 2021 Phys. Rev. B 104 054421
[41] Saxena A and Awana V P S 2023 J. Phys.: Condens. Matter 36 085704
[42] Li, Y, Jiang Y, Zhang J, Liu Z, Yang Z and Wang J 2020 Phys. Rev. B 102 121107
[43] Eremeev S V, OtrokovMM, Ernst A and Chulkov E V 2022 Phys. Rev. B 105 195105
[44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[45] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[49] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2012 Dalton Trans. 42 823
[50] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G and Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[51] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[52] Li Z, Li J, He K, Wan X, Duan W and Xu Y 2020 Phys. Rev. B 102 081107
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[4] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[5] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[6] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[7] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[8] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[9] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[10] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[11] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[12] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[13] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[14] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[15] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
No Suggested Reading articles found!