|
|
|
Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers |
| Wei Chen(陈威)1, Chuhan Tang(唐楚涵)1, Chao-Fei Liu(刘超飞)2, and Mingxing Chen(陈明星)1,3,4† |
1 Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; 2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3 Hunan Research Center of the Basic Discipline for Quantum Effects and Quantum Technologies, Changsha 410081, China; 4 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
|
|
Abstract We investigate the magnetic and topological properties of Mn$_{2}X_{2}$Te$_{5}$ ($X = {\rm Bi}$, Sb) using first-principles calculations. We find that both Mn$_{2}$Bi$_{2}$Te$_{5}$ and Mn$_{2}$Sb$_{2}$Te$_{5}$ bilayers exhibit A-type antiferromagnetic order, which can be understood based on the Goodenough-Kanamori-Anderson rules. We further find that an appropriate hole doping can induce a transition from the A-type antiferromagnetic phase to the ferromagnetic phase in these systems, which also experience a transition from a normal insulator to a quantum anomalous Hall phase. Our study thus demonstrates that tunable magnetism and band topology can be achieved in Mn$_{2}X_{2}$Te$_{5}$, which may be utilized in the design of new functional electronic devices.
|
Received: 27 March 2025
Revised: 28 May 2025
Accepted manuscript online: 16 June 2025
|
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
| |
73.20.At
|
(Surface states, band structure, electron density of states)
|
| |
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
| |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 12174098 and 12574262), and the Major Fundamental Research Program of Hunan Province (Grants No. 2025ZYJ004), and the State Key Laboratory of Powder Metallurgy, Central South University, China. |
Corresponding Authors:
Mingxing Chen
E-mail: mxchen@hunnu.edu.cn
|
Cite this article:
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星) Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers 2025 Chin. Phys. B 34 097304
|
[1] Burch K S, Mandrus D and Park J G 2018 Nature 563 47 [2] Kurebayashi H, Garcia J H, Khan S, Sinova J and Roche S 2022 Nat. Rev. Phys. 4 150 [3] Li H, Ruan S and Zeng Y J 2019 Adv. Mater. 31 1900065 [4] Wang Q H, Bedoya-Pinto A, Blei M, Dismukes A H, Hamo A, Jenkins S and Santos E J 2022 ACS Nano 16 6960 [5] Ahn Y, Guo X, Son S, Sun Z and Zhao L 2024 Prog. Quantum Electron. 93 100498 [6] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457 [7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y and Zhang X 2017 Nature 546 265 [8] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L and Xu X 2017 Nature 546 270 [9] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L and Xu X 2018 Nat. Nanotechnol. 13 544 [10] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406 [11] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M and Zhang Z 2018 Nat. Nanotechnol. 13 554 [12] Jiang S, Li L,Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549 [13] Tan C, Xie W Q, Zheng G, Aloufi N, Albarakati S, Algarni M and Wang L 2021 Nano Lett. 21 5599 [14] Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065 [15] Mi M, Zheng X,Wang S, Zhou Y, Yu L, Xiao H andWang Y 2022 Adv. Funct. Mater. 32 2112750 [16] Lu Y, Wang H, Wang L and Yang L 2022 Phys. Rev. B 106 205403 [17] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y and Chen Y P 2023 Adv. Mater. 35 2205714 [18] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z and Xu X 2022 Nat. Nanotechnol. 17 256 [19] Webster L and Yan J A 2018 Phys. Rev. B 98 144411 [20] Wang Y,Wang C, Liang S J, Ma Z, Xu K, Liu X and Miao F 2020 Adv. Mater. 32 2004533 [21] Kong X, Yoon H, Han M J and Liang L 2021 Nanoscale 13 16172 [22] Xun W, Wu C, Sun H, Zhang W, Wu Y Z and Li P 2024 Nano Lett. 24 3541 [23] Yang S, Xu X, Han B, Gu P, Guzman R, Song Y and Ye Y 2023 J. Am. Chem. Soc. 145 28184 [24] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983 [25] Cheng H X, Zhou J, Wang C, Ji W and Zhang Y N 2021 Phys. Rev. B 104 064443 [26] Yu G, Tang C, Tian Z, Zhu Z, Liu P, Pan A, Chen M and Chen X Q 2023 Phys. Rev. B 108 014106 [27] Xu Y, Elcoro L, Song Z D, Wieder B J, Vergniory M G, Regnault N and Bernevig B A 2020 Nature 586 702 [28] Zhang X, Wang X, He T, Wang L, Yu W W, Liu Y and Cheng Z 2023 Sci. Bull. 68 2639 [29] Moore J E. 2010 Nature 464 194 [30] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 [31] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [32] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41 [33] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C and Xu Y 2019 Sci. Adv. 5 eaaw5685 [34] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J and Zhang Y 2020 Science 367 895 [35] OtrokovMM, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V and Chulkov E V 2019 Phys. Rev. Lett. 122 107202 [36] He K 2020 npj Quantum Mater. 5 90 [37] Zhao Y and Liu Q 2021 Appl. Phys. Lett. 119 060502 [38] Liu C, Wang Y, Yang M, Mao J, Li H, Li Y and Wang Y 2021 Nat. Commun. 12 4647 [39] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J and Wang Y 2020 Nat. Mater. 19 522 [40] Cao L, Han S, Lv Y Y, Wang D, Luo Y C, Zhang Y Y and Chen Y F 2021 Phys. Rev. B 104 054421 [41] Saxena A and Awana V P S 2023 J. Phys.: Condens. Matter 36 085704 [42] Li, Y, Jiang Y, Zhang J, Liu Z, Yang Z and Wang J 2020 Phys. Rev. B 102 121107 [43] Eremeev S V, OtrokovMM, Ernst A and Chulkov E V 2022 Phys. Rev. B 105 195105 [44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [45] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [48] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [49] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2012 Dalton Trans. 42 823 [50] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 [51] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [52] Li Z, Li J, He K, Wan X, Duan W and Xu Y 2020 Phys. Rev. B 102 081107 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|