|
|
|
First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si |
| Zi-Kai Zhou(周子凯)1 and Jun Kang(康俊)1,2,† |
1 Beijing Computational Science Research Center, Beijing 100193, China; 2 Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers. First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions. In this work, we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations. The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities, such as the Stark shift parameter. It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates. The results could be useful for developing quantum computing architectures based on shallow donors in Si.
|
Received: 21 April 2025
Revised: 20 May 2025
Accepted manuscript online: 30 May 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
71.55.-i
|
(Impurity and defect levels)
|
| |
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12393831 and 12088101). |
Corresponding Authors:
Jun Kang
E-mail: jkang@csrc.ac.cn
|
Cite this article:
Zi-Kai Zhou(周子凯) and Jun Kang(康俊) First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si 2025 Chin. Phys. B 34 087102
|
[1] Kane B E 1998 Nature 393 133 [2] McCallum J C, Johnson B C and Botzem T 2021 Appl. Phys. Rev. 8 31314 [3] Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H, Morton J J L and Thewalt M L W 2013 Science 342 830 [4] Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Zwanenburg F A, Jamieson D N, Dzurak A S and Morello A 2013 Nature 496 334 [5] Laucht A, Muhonen J T, Mohiyaddin F A, Kalra R, Dehollain J P, Freer S, Hudson F E, Veldhorst M, Rahman R, Klimeck G, et al. 2015 Sci. Adv. 1 e1500022 [6] Bradbury F R, Tyryshkin A M, Sabouret G, Bokor J, Schenkel T and Lyon S A 2006 Phys. Rev. Lett. 97 176404 [7] Lo C C, Simmons S, Lo Nardo R, Weis C D, Tyryshkin A M, Meijer J, Rogalla D, Lyon S A, Bokor J, Schenkel T, et al. 2014 Appl. Phys. Lett. 104 193502 [8] Pica G, Wolfowicz G, Urdampilleta M, Thewalt M L W, Riemann H, Abrosimov N V, Becker P, Pohl H, Morton J J L, Bhatt R N, et al. 2014 Phys. Rev. B 90 195204 [9] Huebl H, Stegner A R, Stutzmann M, Brandt M S, Vogg G, Bensch F, Rauls E and Gerstmann U 2006 Phys. Rev. Lett. 97 166402 [10] Mansir J, Conti P, Zeng Z, Pla J J, Bertet P, Swift M W, Van De Walle C G, Thewalt M L W, Sklenard B, Niquet Y M, et al. 2018 Phys. Rev. Lett. 120 167701 [11] Dreher L, Hilker T A, Brandlmaier A, Goennenwein S T B, Huebl H, Stutzmann M and Brandt M S 2011 Phys. Rev. Lett. 106 37601 [12] Usman M, Hill C D, Rahman R, Klimeck G, Simmons M Y, Rogge S and Hollenberg L C L 2015 Phys. Rev. B 91 245209 [13] Koiller B, Hu X and Das Sarma S 2001 Phys. Rev. Lett. 88 27903 [14] Wellard C J and Hollenberg L C L 2005 Phys. Rev. B 72 85202 [15] Friesen M 2005 Phys. Rev. Lett. 94 186403 [16] Rahman R, Wellard C J, Bradbury F R, Prada M, Cole J H, Klimeck G and Hollenberg L C L 2007 Phys. Rev. Lett. 99 36403 [17] Usman M, Rahman R, Salfi J, Bocquel J, Voisin B, Rogge S, Klimeck G and Hollenberg L C L 2015 J. Phys.: Condens. Matter 27 154207 [18] Overhof H and Gerstmann U 2004 Phys. Rev. Lett. 92 87602 [19] Swift M W, Peelaers H, Mu S, Morton J J L and Van De Walle C G 2020 Npj Comput. Mater. 6 181 [20] Ma H, Hsueh Y, Monir S, Jiang Y and Rahman R 2022 Commun. Phys. 5 165 [21] Zhang G, Canning A, Grønbech-Jensen N, Derenzo S andWang L 2013 Phys. Rev. Lett. 110 166404 [22] Wang L 2009 J. Appl. Phys. 105 123712 [23] Kang J and Wang L 2022 Phys. Rev. Appl. 18 64001 [24] Wang L and Zunger A 1994 J. Chem. Phys. 100 2394 [25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [26] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [27] Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W and Wang L 2013 Comput. Phys. Commun. 184 9 [28] Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W and Wang L 2013 J. Comput. Phys. 251 102 [29] Troullier N and Martins J 1990 Solid State Commun. 74 613 [30] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin: Springer) p. 198 [31] Ramdas A K and Rodriguez S 1981 Rep. Prog. Phys. 44 1297 [32] Bouhassoune M and Schindlmayr A 2010 Phys. Status Solidi C 7 460 [33] Wilson D K and Feher G 1961 Phys. Rev. 124 1068 [34] Tekippe V J, Chandrasekhar H R, Fisher P and Ramdas A K 1972 Phys. Rev. B 6 2348 [35] Fuhrer A, Füchsle M, Reusch T C G,Weber B and SimmonsMY 2009 Nano Lett. 9 707 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|