Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097102    DOI: 10.1088/1674-1056/ade074
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices Prev   Next  

Unique high-energy excitons in two-dimensional transition metal dichalcogenides

Yongsheng Gao(高永盛), Yuanzheng Li(李远征)†, Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳)‡, and Yichun Liu(刘益春)§
State Key Laboratory of Integrated Optoelectronics, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
Abstract  Two-dimensional (2D) transition metal dichalcogenides (TMDs), endowed with exceptional light-matter interaction strength, have become a pivotal platform in advanced optoelectronics, enabling atomically precise control of excitonic phenomena and offering transformative potential for engineering next-generation optoelectronic devices. In contrast to the narrowband absorption characteristics of conventional band-edge excitons, which are limited by the bandgap energy, high-energy excitons not only demonstrate broad momentum matching capability in the ultraviolet regime due to band nesting effects, but also exhibit distinct absorption peak signatures owing to robust excitonic stabilization under 2D confinement. These unique photophysical properties have established such systems as a prominent research frontier in contemporary exciton physics. This review primarily outlines the distinctive physical characteristics of high-energy excitons in TMDs from the perspectives of band structure, excitonic characteristics, and optical properties. Subsequently, we systematically delineate cutting-edge developments in TMD-based photonic devices exploiting high-energy excitonic band-nesting phenomena, with dedicated emphasis on the strategic engineering of nanoscale heterostructures for tailored optoelectronic functionality. Finally, the discussion concludes with an examination of the challenges associated with the design of high-energy exciton devices and their potential future applications.
Keywords:  two-dimensional materials      transition metal dichalcogenides      high-energy excitons      band nesting effect      optoelectronic applications  
Received:  26 April 2025      Revised:  01 June 2025      Accepted manuscript online:  04 June 2025
PACS:  71.35.-y (Excitons and related phenomena)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  71.35.Pq (Charged excitons (trions))  
Fund: Project supported by the National Natural Science Foundation Fund for Distinguished Young Scholars (Grant No. 52025022), the National Natural Science Foundation of China (Grant Nos. 62574038, 12474421, 62275045, and 12074060), the National Key R&D Program of China (Grant No. 2023YFB3610200), and the Fund from Jilin Province (Grant Nos. JJKH20241413KJ and 20240601049RC).
Corresponding Authors:  Yuanzheng Li, Haiyang Xu, Yichun Liu     E-mail:  liyz264@nenu.edu.cn;hyxu@nenu.edu.cn;ycliu@nenu.edu.cn

Cite this article: 

Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春) Unique high-energy excitons in two-dimensional transition metal dichalcogenides 2025 Chin. Phys. B 34 097102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L and Morozov S 2012 Science 335 947
[3] Zhong Y, Yue S, Liang J, Yuan L, Xia Y, Tian Y, Zheng Y, Zhang Y, Du W, Li D, Chen S, Pan A and Liu X 2025 Nano Lett. 25 5274
[4] Coker K, Zheng C, Arhin J R, Agyekum K O B O and Zhang W 2024 Chin. Phys. B 33 037102
[5] You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477
[6] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
[7] Chen P Y, Quan Z and Wang S D 2024 Chin. Phys. B 33 107105
[8] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R and Chen Y 2014 Nat. Nanotechnol. 9 111
[9] Bao X, Shi J, Han X, Wu K, Zeng X, Xia Y, Zhao J, Zhang Z, Du W, Yue S Wu X, Wu B, Huang Y, Zhang W and Liu X 2025 Nano Lett. 25 2639
[10] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[11] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401
[12] Kim J, Hong X, Jin C, Shi S F, Chang C Y S, Chiu M H, Li L J and Wang F 2014 Science 346 1205
[13] Wu Y C, Taniguchi T,Watanabe K and Yan J 2023 ACS Nano 17 15641
[14] Barré E, Karni O, Liu E, O’Beirne A L, Chen X, Ribeiro H B, Yu L, Kim B, Watanabe K and Taniguchi T 2022 Science 376 406
[15] Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E, White D, Watanabe K, Taniguchi T, Bonato C and Gerardot B D 2020 Nat. Mater. 19 630
[16] Shi Q, Shih E M, Rhodes D, Kim B, Barmak K,Watanabe K, Taniguchi T, Papić Z, Abanin D A and Hone J 2022 Nat. Nanotechnol. 17 577
[17] Tan Q, Rasmita A, Li S, Liu S, Huang Z, Xiong Q, Yang S A, Novoselov K and Gao W B 2021 Sci. Adv. 7 eabh0863
[18] Hao K, Specht J F, Nagler P, Xu L, Tran K, Singh A, Dass C K, Schüller C, Korn T and Richter M 2017 Nat. Commun. 8 15552
[19] Lindlau J, Selig M, Neumann A, Colombier L, Förste J, Funk V, Förg M, Kim J and Berghäuser G 2018 Nat. Commun. 9 2586
[20] Schmitt D, Bange J P, Bennecke W, Meneghini G, AlMutairi A, Merboldt M, Pöhls J, Watanabe K, Taniguchi T and Steil S 2025 Nat. Photonics 19 187
[21] Li D, Trovatello C, Dal Conte S, Nuß M, Soavi G, Wang G, Ferrari A C, Cerullo G and Brixner T 2021 Nat. Commun. 12 954
[22] Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A and Wurstbauer U 2019 Nat. Commun. 10 807
[23] Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V and Höfling S 2016 Nat. Commun. 7 13328
[24] Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S and Xu H 2018 ACS Nano 12 10393
[25] Wolff C and Mortensen N A 2020 Nat. Commun. 11 4039
[26] Zhou Y, Scuri G, Wild D S, High A A, Dibos A, Jauregui L A, Shu C, De Greve K, Pistunova K and Joe A Y 2017 Nat. Nanotechnol. 12 856
[27] Gillen R and Maultzsch J 2016 IEEE J. Sel. Top. Quantum Electron. 23 219
[28] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[29] Carvalho A, Ribeiro R and Castro Neto A 2013 Phys. Rev. B 88 115205
[30] Jones A J, Muzzio R, Majchrzak P, Pakdel S, Curcio D, Volckaert K, Biswas D, Gobbo J, Singh S and Robinson 2020 Adv. Mater. 32 2001656
[31] Dong K, Zhou H, Gao Z, Xu M, Zhang L, Zhou S, Cui H,Wang S, Tao C and Ke W 2024 Adv. Funct. Mater. 34 2306941
[32] Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X and Huang F 2020 Nano Energy 72 104718
[33] Lan W, Wang Y, Singh J and Zhu F 2018 ACS Photonics 5 1144
[34] Lu Y, Chen T, Mkhize N, Chang R J, Sheng Y, Holdway P, Bhaskaran H and Warner J H 2021 ACS Nano 15 19570
[35] Tan Y, Qiao Q, Zhao T, Chang S, Zhang Z, Zang J, Lin C, Shang Y, Yang X and Zhou J 2024 J. Mater. Sci. Technol. 190 200
[36] Tsai H, NieW, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J and Tretiak S 2016 Nature 536 312
[37] Zhou X, Lu Z, Zhang L and Ke Q 2023 Nano Energy 117 108908
[38] Rarick H, Kala A, Pumulo S, Manna A, Sharp D, Munley C, Xu X and Majumdar A 2024 ACS Photonics 11 4635
[39] Sinelnik A, Lam S H, Coviello F, Klimmer S, Della Valle G, Choi D Y, Pertsch T, Soavi G and Staude I 2024 Nat. Commun. 15 2507
[40] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[41] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[42] Koitzsch A, Pawlik A-S, Habenicht C, Klaproth T, Schuster R, Büchner B and Knupfer M 2019 npj 2D Mater. Appl. 3 41
[43] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445
[44] Klots A, Newaz A, Wang B, Prasai D, Krzyzanowska H, Lin J, Caudel D, Ghimire N, Yan J and Ivanov B 2014 Sci. Rep. 4 6608
[45] Low T and Avouris P 2014 ACS Nano 8 1086
[46] Stauber T, Peres N M and Geim A K 2008 Phys. Rev. B 78 085432
[47] Rose A H, Aubry T J, Zhang H and van de Lagemaat J 2022 Adv. Opt. Mater. 10 2200485
[48] Cha S, Ouyang T, Taniguchi T, Watanabe K, Gabor N M and Lui C H 2024 Nano Lett. 24 14847
[49] Huang W, Xiao Y, Xia F, Chen X and Zhai T 2024 Adv. Funct. Mater. 34 2310726
[50] Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Phys. Rev. Lett. 114 097403
[51] Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Kim J W and Park S 2017 ACS Photonics 4 38
[52] Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H and Ahn H 2018 Laser Photonics Rev. 12 1800188
[53] Guo W P, Liang W Y, Cheng C W, Wu W L, Wang Y T, Sun Q, Zu S, Misawa H, Cheng P J and Chang S W 2020 Nano Lett. 20 2857
[54] Xu C, Mao Y, Li K, Wang Z, Liu X, Dong N, Li S Y, Pan A and Wang J 2024 Adv. Opt. Mater. 12 2302407
[55] Manca M, Glazov M M, Robert C, Cadiz F, Taniguchi T, Watanabe K, Courtade E, Amand T, Renucci P and Marie X 2017 Nat. Commun. 8 14927
[56] Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Á guila A G, Christianen P C, Bratschitsch R, Schüller C and Korn T 2016 Nat. Commun. 7 12715
[57] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
[58] Camellini A, Mennucci C, Cinquanta E, Martella C, Mazzanti A, Lamperti A, Molle A, De Mongeot F B, Della Valle G and Zavelani-Rossi M 2018 ACS Photonics 5 3363
[59] Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H and Matsuda K 2014 Nat. Commun. 5 4543
[60] Li Y,Wu X, LiuW, Xu H and Liu X 2021 Appl. Phys. Lett. 119 051106
[61] Borzda T, Gadermaier C, Vujicic N, Topolovsek P, Borovsak M, Mertelj T, Viola D, Manzoni C, Pogna E A and Brida D 2015 Adv. Funct. Mater. 25 3351
[62] Goswami T, Bhatt H, Babu K J, Kaur G, Ghorai N and Ghosh H N 2021 J. Phys. Chem. Lett. 12 6526
[63] Li M, Fu J, Xu Q and Sum T C 2019 Adv. Mater. 31 1802486
[64] St-Gelais R, Bhatt G R, Zhu L, Fan S and Lipson M 2017 ACS Nano 11 3001
[65] Urcuyo R, Duong D L, Sailer P, Burghard M and Kern K 2016 Nano Lett. 16 6761
[66] Wang L, Wang Z, Wang H-Y, Grinblat G, Huang Y L, Wang D, Ye X H, Li X B, Bao Q and Wee A S 2017 Nat. Commun. 8 13906
[67] Li Y, Shi J, Chen H, Mi Y, Du W, Sui X, Jiang C, Liu W, Xu H and Liu X 2019 Laser Photonics Rev. 13 1800270
[68] Rose A H, Aubry T J, Zhang H, Vigil-Fowler D and van de Lagemaat J 2022 J. Phys. Chem. C 126 8710
[69] Wei X, Wang Z, Wang Z, Lu Y, Ji Q and Liu W 2024 Nano Lett. 24 9269
[70] Tran T X, Jang Y J, Vu V T, Jung C W, Do V D, Jin Y, Lee J, Kim H and Kim J H 2024 Nano Lett. 24 11163
[71] Fan K, Wang H, Ma Z, Liao W A, Zhang W H, Liu C F, Meng S, Tian G and Fu Y S 2024 J. Am. Chem. Soc. 146 33561
[72] Li Z, Zeng Y, Ou Z, Zhang T, Du R, Wu K, Guo Q, Jiang W, Xu Y and Li T 2022 Nano Res. 15 1616
[73] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L and Lu H 2020 Nano Lett. 20 2129
[74] Zhang T and Wang J 2021 ACS Photonics 8 2770
[75] Liu H, Wang C, Zuo Z, Liu D and Luo J 2020 Adv. Mater. 32 1906540
[76] Qu J, Wei Y, Zhao L, Tan R, Li W, Shi H, Zhang Y, Yang J, Gao B and Li X 2024 ACS Nano 18 34322
[77] Arora A, Drüppel M, Schmidt R, Deilmann T, Schneider R, Molas M R, Marauhn P, Michaelis de Vasconcellos S, Potemski M and Rohlfing M 2017 Nat. Commun. 8 639
[78] Kumar D, Kumar V, Kumar R, Kumar M and Kumar P 2022 Phys. Rev. B 105 085419
[79] Yang L, Peng Y, Yang Y, Liu J, Huang H, Yu B, Zhao J, Lu Y, Huang Z and Li Z 2019 Adv. Sci. 6 1900310
[80] Lee J U, Kim K, Han S, Ryu G H, Lee Z and Cheong H 2016 ACS Nano 10 1948
[81] Kim K, Lee J U, Nam D and Cheong H 2016 ACS Nano 10 8113
[82] McCreary K M, Phillips M, Chuang H J, Wickramaratne D, Rosenberger M, Hellberg C S and Jonker B T 2022 Nanoscale 14 147
[83] Wang Y, Carvalho B R and Crespi V H 2018 Phys. Rev. B 98 161405
[84] Tan Q H, Sun Y J, Liu X L, Zhao Y, Xiong Q, Tan P H and Zhang J 2017 2D Mater. 4 031007
[85] Bilgin I, Raeliarijaona A S, Lucking M C, Hodge S C, Mohite A D, de Luna Bugallo A, Terrones H and Kar S 2018 ACS Nano 12 740
[86] Cortijo-Campos S, Kung P, Prieto C and de Andres A 2021 J. Phys. Chem. C 125 23904
[87] Trovatello C, Miranda H P, Molina-Sanchez A, Borrego-Varillas R, Manzoni C, Moretti L, Ganzer L, Maiuri M, Wang J and Dumcenco D 2020 ACS Nano 14 5700
[88] Schneider E, Watanabe K, Taniguchi T and Maultzsch J 2024 Phys. Rev. B 110 125431
[89] Yan Z, Poh E T, Zhang Z, Chua S T, Wang X, Wu X, Chen Z, Yang J, Xu Q H and Goh K E J 2020 ACS Nano 14 5946
[90] Feng J, Li Y, Li J, Feng Q, Xin W, Liu W, Xu H and Liu Y 2022 Nano Lett. 22 3699
[91] Li Y, Pan J, Yan C, Li J, Xin W, Zhang Y, Liu W, Liu X, Xu H and Liu Y 2024 Nano Lett. 24 7252
[92] Liu W, Yang X, Wang Z, Li Y, Li J, Feng Q, Xie X, Xin W, Xu H and Liu Y 2023 Light-Sci. Appl. 12 180
[93] Long Z, Zhou Y, Ding Y, Qiu X, Poddar S and Fan Z 2025 Nat. Rev. Mater. 10 128
[94] Li J, Zhou Y, Li Y, Yan C, Zhao X G, Xin W, Xie X, Liu W, Xu H and Liu Y 2024 ACS Photonics 11 4578
[95] Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y and Li X 2018 J. Mater. Chem. C 6 10982
[96] Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P and Luo L B 2018 Adv. Funct. Mater. 28 1705970
[97] Zhao Z, Wu D, Guo J, Wu E, Jia C, Shi Z, Tian Y, Li X and Tian Y 2019 J. Mater. Chem. C 7 12121
[98] Wang H,WangW, Zhong Y, Li D, Li Z, Xu X, Song X, Chen Y, Huang P and Mei A 2022 Adv. Mater. 34 2206122
[99] Yan C, Li Y, Li R, Ma R, Li J, Xin W, Liu W, Xu H and Liu Y 2024 Laser Photonics Rev. 18 2400951
[100] Ma R, Ren H, Yan C, Li Y, Li J, Xin W, Liu W, Zhao X G, Yang L and Feng S 2024 ACS Photonics 11 5339
[101] Yu Y, Dong C-D, Binder R, Schumacher S and Ning C Z 2023 ACS Nano 17 4230
[102] Yang S, Chen W, Sa B, Guo Z, Zheng J, Pei J and Zhan H 2023 Nano Lett. 23 3070
[103] Du Q, Zhu C, Yin Z, Na G, Cheng C, Han Y, Liu N, Niu X, Zhou H and Chen H 2020 ACS Nano 14 5806
[104] Khan A R, Liu B, Lu T, Zhang L, Sharma A, Zhu Y, Ma W and Lu Y 2020 ACS Nano 14 15806
[105] Mennel L, Smejkal V, Linhart L, Burgdörfer J, Libisch F and Mueller T 2020 Nano Lett. 20 4242
[106] F. Imani M, Smith D R and del Hougne P 2020 Adv. Funct. Mater. 30 2005310
[107] Epstein I, Terrés B, Chaves A J, Pusapati V V, Rhodes D A, Frank B, Zimmermann V, Qin Y, Watanabe K and Taniguchi T 2020 Nano Lett. 20 3545
[108] Woo S Y, Zobelli A, Schneider R, Arora A, Preuß J A, Carey B J, Michaelis de Vasconcellos S, Palummo M, Bratschitsch R and Tizei L H 2023 Phys. Rev. B 107 155429
[109] Lee S, Seo D, Park S H, Izquierdo N, Lee E H, Younas R, Zhou G, Palei M, Hoffman A J and Jang M S 2023 Nat. Commun. 14 3889
[1] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[2] Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers
Hu Chen(陈虎), Shi-Qi Li(李仕琪), Yuqing Wu(吴雨晴), Xiaozhendong Bao(鲍晓振东), Zhijie Lei(雷志杰), Hongsheng Liu(柳洪盛), Yuee Xie(谢月娥), Junfeng Gao(高峻峰), Yuanping Chen(陈元平), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2025, 34(8): 084206.
[3] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[4] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[5] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[6] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[7] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[8] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[9] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[10] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[11] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[12] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[13] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[14] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[15] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
No Suggested Reading articles found!