Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097405    DOI: 10.1088/1674-1056/add009
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure-stabilized Li2K electride with superconducting behavior

Xiao-Zhen Yan(颜小珍)1, Quan-Xian Wu(邬泉县)1, Lei-Lei Zhang(张雷雷)2, and Yang-Mei Chen(陈杨梅)1,†
1 School of Science, Jiangxi Provincial Key Laboratory of Particle Technology, Jiangxi University of Science and Technology, Jiangxi 341000, China;
2 Institute of Nano-Structured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450063, China
Abstract  Compression of alkali elements makes them depart gradually from the s-band metals, leading to exotic physical and chemical properties. Here, we report the chemical reaction $\rm Li + K \to Li_{2}K $ under high pressure by using a swarm intelligence structure searching methodology combined with first-principles calculations. Li$_{2}$K has three stable/metastable structures and undergoes the pressure-induced phase transitions $C2/m \to Fddd \to I4/mmm$ at 226 GPa and 291 GPa, respectively. Notably, this system features significant $\rm s\to p$ and $\rm s\to d$ charge transfers as well as a topologically zero-dimensional electride character. Under 300 GPa, Li$_{2}$K manifests exceptional superconductivity with a critical temperature ($T_{\rm c}$) of 39 K, attributed to the orbital hybridization between Li p states and interstitial quasi-atom-derived s electrons, and their robust coupling with Li and K phonon modes. This work serves as a crucial reference for exploring novel superconducting electrides.
Keywords:  superconductivity      high pressure      first-principles study      electride  
Received:  04 February 2025      Revised:  20 April 2025      Accepted manuscript online:  24 April 2025
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.dk (First-principles theory)  
  87.15.Zg (Phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12364003, 11804131 and 11704163), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20252BAC240168, 20232BAB211022, and 20181BAB211007), and the Natural Science Foundation of Henan Province (Grant No. 242300421689).
Corresponding Authors:  Yang-Mei Chen     E-mail:  chenyangmei@jxust.edu.cn

Cite this article: 

Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅) Pressure-stabilized Li2K electride with superconducting behavior 2025 Chin. Phys. B 34 097405

[1] Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174
[2] Ma Y, Oganov A R and Xie Y 2008 Phys. Rev. B 78 014102
[3] McMahonMI, Nelmes R J, Schwarz U and Syassen K 2006 Phys. Rev. B 74 140102
[4] Rousseau B, Xie Y, Ma Y and Bergara A 2011 Eur. Phys. J. B 81 1
[5] Tsuppayakorn-Aek P, Luo W, Watcharatharapong T, Ahuja R and Bovornratanaraks T 2018 Sci. Rep. 8 5278
[6] Woolman G, Naden Robinson V, Marqués M, Loa I, Ackland G J and Hermann A 2018 Phys. Rev. Mater. 2
[7] Yao Y, Tse J S and Klug D D 2009 Phys. Rev. Lett. 102 115503
[8] Wang X, Wang Z, Gao P, Zhang C, Lv J, Wang H, Liu H, Wang Y and Ma Y 2023 Nat. Commun. 14 2924
[9] Wang B, Hilleke K P, Wang X, Polsin D N and Zurek E 2023 Phys. Rev. B 107 184101
[10] Racioppi S, Storm C V, McMahonMI and Zurek E 2023 Angew. Chem. 135 e202310802
[11] Miao M S, Hoffmann R, Botana J, Naumov I I and Hemley R J 2017 Angew. Chem. 129 992
[12] Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501
[13] Matsuoka T, Sakata M, Nakamoto Y, Takahama K, Ichimaru K, Mukai K, Ohta K, Hirao N, Ohishi Y and Shimizu K 2014 Phys. Rev. B 89 144103
[14] Lv J, Wang Y, Zhu L and Ma Y 2011 Phys. Rev. Lett. 106 015503
[15] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[16] Schaeffer A M, Temple S R, Bishop J K and Deemyad S 2015 Proc. Natl. Acad. Sci. USA 112 60
[17] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597
[18] Struzhkin V V, Eremets M I, Gan W, Mao H K and Hemley R J 2002 Science 298 1213
[19] Huang H M, Zhu Q, Blatov V A, Oganov A R, Wei X, Jiang P and Li Y L 2023 Nano Lett. 23 5012
[20] Yang L, Qu X, Zhong X, Wang D, Chen Y, Lang J, Liu C, Sun B and Yang J 2021 Comp. Mater. Sci. 200 110818
[21] Frost M, McBride E E, Schörner M, Redmer R and Glenzer S H 2020 Phys. Rev. B 101 224108
[22] Yang L, Qu X, Zhong X, Wang D, Chen Y, Yang J, Lv J and Liu H 2019 J. Phys. Chem. Lett. 10 3006
[23] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konópkova Z, Popov I A, Boldyrev A I and Wang H T 2017 Nat. Chem. 9 440
[24] Chen Y M, Geng H Y, Yan X Z, Wang Z W, Chen X R and Wu Q 2017 Chin. Phys. B 26 056102
[25] Chen Y, Chen X, Wu Q, Geng H, Yan X, Wang Y and Wang Z 2016 J. Phys. D: Appl. Phys. 49 355305
[26] Botana J and Miao M S 2014 Nat. Commun. 5 4861
[27] Zhang X and Zunger A 2010 Phys. Rev. Lett. 104 245501
[28] Xie Y, Oganov A R and Ma Y 2010 Phys. Rev. Lett. 104 177005
[29] Desgreniers S, John S T, Matsuoka T, Ohishi Y and Justin J T 2015 Sci. Adv. 1 e1500669
[30] Chen Y, Yan X, Geng H, Sheng X, Zhang L, Wang H, Li J, Cao Y and Pan X 2021 Inorg. Chem. 60 124
[31] Pereira Z S, Faccin G M and da Silva E Z 2021 J. Phys. Chem. C 125 8899
[32] Wang Q, Cui W, Gao K, Chen J, Gu T, Liu M, Hao J, Shi J and Li Y 2022 Phys. Rev. B 106 054519
[33] Xu W, Wang Q, Zeng Q, Li X, Shi J, Hao J, Cui W and Li Y 2025 Comput. Mater. Today 5 100017
[34] Liu Z, Duan D, Zhuang Q and Cui T 2023 Phys. Rev. B 108 L100507
[35] Novoselov D Y, Korotin D M, Shorikov A O, Anisimov V I and Oganov A R 2024 Phys. Chem. Chem. Phys. 26 17854
[36] Zhang X, Yao Y, Ding S, Bergara A, Li F, Liu Y, Zhou X F and Yang G 2023 Phys. Rev. B 107 L100501
[37] Guo Z, Bergara A, Zhang X, Li X, Ding S and Yang G 2024 Phys. Rev. B 109 134505
[38] Wang X, Wang Y, Wang J, Pan S, Lu Q, Wang H T, Xing D and Sun J 2022 Phys. Rev. Lett. 129 246403
[39] Zhao Y, Bergara A, Zhang X, Li F, Liu Y and Yang G 2023 Phys. Rev. B 108 104505
[40] Wang Q, Wei J, Zhong T, Sun J, Gao B, Zhu L, Liu H and Zhang S 2024 Phys. Rev. B 110 144523
[41] Zhang X, An T and Yang G 2025 Comput. Mater. Today 5 100020
[42] Liu Z, Zhuang Q, Tian F, Duan D, Song H, Zhang Z, Li F, Li H, Li D and Cui T 2021 Phys. Rev. Lett. 127 157002
[43] Wang Q, CuiW, XuW, Gao K, Hao J, Shi J, Liu H and Li Y 2024 Phys. Rev. B 110 134114
[44] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[45] Wang H, Wang Y C, Lv J, Li Q, Zhang L J and Ma Y M 2016 Comp. Mater. Sci. 112 406
[46] Wang Y, Lv J, Zhu L, Lu S, Yin K, Li Q, Wang H, Zhang L and Ma Y 2015 J. Phys. Condens. Matter 27 203203
[47] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Miao M S, Zhang M L, Van Doren V E, Ladik J J and Mintmire J W 2000 J. Phys. Chem. A 104 6809
[50] Toulouse J and Savin A 2006 J. Mol. Struct.-Theochem 762 147
[51] Blöchl P E 1994 Phys. Rev. B 50 17953
[52] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502
[53] Lv J, Wang Y, Zhu L and Ma Y 2011 Phys. Rev. Lett. 106 015503
[54] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 146401
[55] Lundegaard L F, Marqués M, Stinton G, Ackland G J, Nelmes R J and McMahon M I 2009 Phys. Rev. B 80 020101
[56] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[57] Bader R F 1990 Atoms in Molecules (Wiley Online Library)
[58] Christensen N and Novikov D 2001 Phys. Rev. Lett. 86 1861
[59] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[60] He Y, Lu J, Wang X and Shi J J 2023 Phys. Rev. B 108 054515
[61] Yin Y, Chen F, Hu G, Zhao X, Yuan X and Ren J 2025 Phys. Rev. B 111 064519
[62] Guan Z, Cui T and Li D 2025 Phys. Rev. B 111 014516
[1] Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides
Lu Zheng(郑璐), Zimeng Lv(吕梓萌), Xiaochen Huang(黄小琛), Zhuangfei Zhang(张壮飞), Chao Fang(房超), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Liangchao Chen(陈良超), Xiaopeng Jia(贾晓鹏), Biao Wan(万彪), and Huiyang Gou(缑慧阳). Chin. Phys. B, 2025, 34(9): 097105.
[2] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[3] Pressure-induced amorphization and metallization in orthorhombic SiP
Qiru Zeng(曾琪茹), Youjun Zhang(张友君), Yukai Zhuang(庄毓凯), Linfei Yang(杨林飞), Qiming Wang(王齐明), and Yi Sun(孙熠). Chin. Phys. B, 2025, 34(9): 096102.
[4] Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬). Chin. Phys. B, 2025, 34(9): 096401.
[5] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[6] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[7] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[8] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[9] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[10] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[11] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[12] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[13] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[14] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[15] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
No Suggested Reading articles found!