Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027401    DOI: 10.1088/1674-1056/ad9733
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)

Guo-Hua Liu(刘国华)1, Kai-Yue Jiang(江恺悦)1, Yi Wan(万一)1, Shu-Xiang Qiao(乔树祥)1, Jin-Han Tan(谭锦函)1, Na Jiao(焦娜)1, Ping Zhang(张平)1,2, and Hong-Yan Lu(路洪艳)1,†
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The unique three-dimensional orthorhombic NbS (o-NbS) compound synthesized in 1969 has recently been experimentally confirmed to be a superconductor [Phys. Rev. B 108 174517 (2023)]. However, there is currently no theoretical research on its superconducting mechanism. In this work, we investigate the superconducting properties of o-NbS from first-principles calculations. Based on the Eliashberg equation, it is found that the superconductivity mainly originates from the coupling between the electrons of Nb-4d orbitals and the vibrations of Nb atoms in the low-frequency region and those of S atoms in the high-frequency region. A superconducting transition temperature ($T_{\rm c}$) of 10.7 K is obtained, which is close to the experimental value and higher than most transition metal chalcogenides (TMCs). The calculated thermodynamic properties in the superconducting state, such as specific heat, energy gap, isotope coefficient, etc., also indicate that o-NbS is a conventional phonon-mediated superconductor. These results are consistent with recent experimental reports and provide a good understanding of the superconducting mechanism of o-NbS. Furthermore, the TMCs of o-TaS and o-WS are also investigated; these belong to the same and neighboring groups of Nb, and we find that o-TaS and o-WS are also phonon-mediated superconductors with $T_{\rm c}$ of 8.9 K and 7.2 K, respectively.
Keywords:  first-principles calculations      phonon-mediated superconductivity      orthorhombic transition metal chalcogenides  
Received:  18 September 2024      Revised:  01 November 2024      Accepted manuscript online:  26 November 2024
PACS:  74.25.-q (Properties of superconductors)  
  63.20.dk (First-principles theory)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.20.Fg (BCS theory and its development)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074213 and 11574108), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA082), and the Project of Introduction and Cultivation for Young Innovative Talentsin Colleges and Universities of Shandong Province.
Corresponding Authors:  Hong-Yan Lu     E-mail:  hylu@qfnu.edu.cn

Cite this article: 

Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳) Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W) 2025 Chin. Phys. B 34 027401

[1] Coleman J N, Lotya M, ONeill A, et al. 2011 Science 331 568
[2] Lotsch B V 2015 Annu. Rev. Mater. Res. 45 85
[3] Ryu H, Chen Y, Kim Heejung, et al. 2018 Nano Lett. 18 689
[4] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y and Berger H 2004 Phys. Rev. Lett. 92 086401
[5] Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A H and Reznik D 2011 Phys. Rev. Lett. 107 107403
[6] Malliakas C D and Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719
[7] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[8] Zhang H, Rousuli A, Zhang K, et al. 2022 Nat. Phys. 18 1425
[9] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M and Takagi H 2001 Science 294 2518
[10] Bi X, Li Z, Huang J, et al. 2022 Phys. Rev. Res. 4 013188
[11] Xu J P, Wang M X, Liu Z L, et al. 2015 Phys. Rev. Lett. 114 017001
[12] Van Maaren M and Schaeffer G 1966 Phys. Lett. 20 131
[13] Witteveen C, Górnicka K, Chang J, Mnsson M, Klimczuk T and Von Rohr F O 2021 Dalton Trans. 50 3216
[14] Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C and Checkelsky J G 2020 Science 370 231
[15] Kckerling M, Johrendt D and Finckh E W 1998 J. Am. Chem. Soc. 120 12297
[16] Blitz W and Köcher A 1938 Z. Anorg. Allg. Chem. 237 369
[17] Schönberg N 1954 Acta Metall. 2 427
[18] An Y, Chen J, Yan Y, Wang J, Zhou Y, Wang Z, Ma C, Wang T, Wu R and Liu W 2023 Phys. Rev. B 108 054519
[19] Kadijk F and Jellinek F J 1969 Less-Common Met. 19 421
[20] Amberger E, Polborn K, Grimm P, Dietrich M and Obst B 1978 Solid State Commun. 26 943
[21] Jellinek F, Brauer G and Mller H 1960 Nature 185 376
[22] Rijnsdorp J and Jellinek F 1978 J. Solid State Chem. 25 325
[23] Narayan P B V and Finnemore D K 1978 J. Less-Common Met. 61 231
[24] Ruan B B, Yi J K, Chen L W, Zhou M H, Shi Y Q, Yang Q S, Gu Y D, Chen G F and Ren Z A 2023 Phys. Rev. B 108 174517
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter. 21 395502
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] McMillan W L 1968 Phys. Rev. 167 331
[29] Dynes R C 1972 Solid State Commun. 10 615
[30] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[31] Giustino F 2017 Rev. Mod. Phys. 89 015003
[32] Carbotte J P 1990 Rev. Mod. Phys. 4 62
[33] Jiao N, Liu H D, Yang L, Li Y P, Zheng M M, Lu H Y and Zhang P 2022 Europhys. Lett. 138 46002
[34] Sarkar S and Das A N 1994 Phys. Rev. B 49 13070
[1] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[2] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[3] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[4] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[5] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[6] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[7] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[8] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[9] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
[10] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[11] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[12] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[13] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[14] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[15] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
No Suggested Reading articles found!