Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068903    DOI: 10.1088/1674-1056/adcaa3
Special Issue: SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference

Shutao Hu(胡澍涛)1,†, Meng Qian(钱萌)1,†, Gang Zhang(张刚)2,‡, and Bei Zhang(张蓓)1,§
1 School of Physics Science and Technology, Xinjiang University, Urumqi 830017, China;
2 Changsanjiao Research Institute, Beijing Institute of Technology, Jiaxing 314001, China
Abstract  Quantum interference effect serves as a critical strategy for addressing incorrect energy level alignment between frontier molecular orbitals and electrodes in molecular junctions. Weak-coupling structures offer an effective approach to suppress phonon thermal conductance. The thermoelectric properties of pure C$_{3}$N$_{4}$ nanoribbon devices and C$_{3}$N$_{4}$-C$_{20}$ molecular junctions are systematically investigated based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) formalism. The results show that pure C$_{3}$N$_{4}$ nanoribbon devices have superior charge transport capabilities and excellent Seebeck coefficients. A remarkable thermoelectric figure of merit ($ZT=0.98$) is achieved near 0.09 eV. The pronounced scattering effect induced by embedding a C$_{20}$ molecule in the center of the C$_{3}$N$_{4}$ nanoribbon significantly suppresses phonon transport. A maximum ZT value of 1.68 is observed at 0.987 eV. The electron mobility of C$_{3}$N$_{4}$-C$_{20}$-par is effectively increased due to quantum interference effect which greatly improves the alignment between the C$_{20}$ molecule's frontier orbital energy level and C$_{3}$N$_{4}$ electrodes. The C$_{3}$N$_{4}$-C$_{20}$-van der Waals (vdW) molecular junction allows very few phonons to pass through the C$_{20}$ molecule from the left electrode to the right electrode. As a result, the C$_{3}$N$_{4}$-C$_{20}$-vdW junction achieves an excellent ZT value of 3.82 near the Femi level.
Keywords:  quantum interference effect      C$_{3}$N$_{4}$-C$_{20}$ molecular junctions      thermoelectric properties      first-principles theory  
Received:  02 March 2025      Revised:  03 April 2025      Accepted manuscript online:  09 April 2025
PACS:  89.20.Bb (Industrial and technological research and development)  
  31.15.E (Density-functional theory)  
  73.50.Lw (Thermoelectric effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164046).
Corresponding Authors:  Gang Zhang, Bei Zhang     E-mail:  gangzhang2006@gmail.com;zhb@xju.edu.cn

Cite this article: 

Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓) Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference 2025 Chin. Phys. B 34 068903

[1] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[2] Bürkle M, Hellmuth T J, Pauly F and Asai Y 2015 Phys. Rev. B 91 165419
[3] Perroni C A, Ninno D and Cataudella V 2016 J. Phys. Condens. Matter. 28 373001
[4] Xiong Y, Xu L, Sun L, Wu P, Xie G and Hu B 2019 Adv. Electron. Mater. 5 1800877
[5] Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
[6] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Appl. Phys. Lett. 109 023101
[7] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[8] Liu Y Y, Li B L, Chen S Z, Jiang X and Chen K Q 2017 Appl. Phys. Lett. 111 133107
[9] Chen D H, Yang Z, Fu X Y, Qin S A, Yan Y, Wang C K, Li Z L and Qiu S 2024 Chin. Phys. B 33 047201
[10] Zeng Y J, Feng Y X, Tang L M and Chen K Q 2021 Appl. Phys. Lett. 118 183103
[11] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X and Chen K Q 2021 Appl. Phys. Lett. 119 063503
[12] Yee S K, Malen J A, Majumdar A and Segalman R A 2011 Nano Lett. 11 4089
[13] Jin C and Solomon G C 2018 J. Phys. Chem. C 122 14233
[14] Nakamura H, Ohto T, Ishida T and Asai Y 2013 J. Am. Chem. Soc. 135 16545
[15] Famili M, Grace I M, Al-Galiby Q, Sadeghi H and Lambert C J 2018 Adv. Funct. Mater. 28 1703135
[16] Zhang B, Zhang S, Dong J, Sun Y, Ouyang F and Long M 2021 J. Mater. Chem. C 9 12322
[17] Finch C M, García-Suárez V M and Lambert C J 2009 Phys. Rev. B 79 033405
[18] Miao R, Xu H, Skripnik M, Cui L, Wang K, Pedersen K G L, Leijnse M, Pauly F, Wärnmark K, Meyhofer E, Reddy P and Linke H 2018 Nano Lett. 18 5666
[19] Wimmer M, Palma J L, Tarakeshwar P and Mujica V 2016 J. Phys. Chem. Lett. 7 2977
[20] Richert S, Cremers J, Kuprov I, PeeksMD, Anderson H L and Timmel C R 2017 Nat. Commun. 8 14842
[21] Calogero G, Alcón I, Papior N, Jauho A P and Brandbyge M 2019 J. Am. Chem. Soc. 141 13081
[22] Magoga M and Joachim C 1999 Phys. Rev. B 59 16011
[23] Wu Q, Sadeghi H, García-Suárez V M, Ferrer J and Lambert C J 2017 Sci. Rep. 7 11680
[24] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M S 2012 Nat. Nanotechnol. 7 663
[25] Damle P, Ghosh A W and Datta S 2002 Chem. Phys. 281 171
[26] Roland C, Larade B, Taylor J and Guo H 2001 Phys. Rev. B 65 041401
[27] Khalatbari H, Vishkayi S I and Soleimani H R 2019 Physica E 108 372
[28] Zhou P, Li G and Sun M 2023 Phys. Chem. Chem. Phys. 25 31615
[29] Ji G, Li D, Fang C, Xu Y, Zhai Y, Cui B and Liu D 2012 Phys. Lett. A 376 773
[30] Otani M, Ono T and Hirose K 2004 Phys. Rev. B 69
[31] Miyamoto Y and Saito M 2001 Phys. Rev. B 63 161401
[32] Cao X H, Zhou W X, Chen C Y, Tang L M, Long M and Chen K Q 2017 Sci. Rep. 7 10842
[33] Nikolić B K, Saha K K, Markussen T and Thygesen K S 2012 J. Comput. Electron. 11 78
[34] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K and Antonietti M 2010 Nat. Mater. 8 271
[35] Patnaik S, Sahoo D P and Parida K 2021 Carbon 172 682
[36] Zhang L, Zhang M, Song X, Wang H and Bian Z 2020 Chem. Eng. J. 399 125825
[37] Eroglu Z and Metin O 2023 ACS Appl. Nano Mater. 6 7960
[38] Antil B, Kumar L, Das M R and Deka S 2022 J. Energy Storage. 52 153722
[39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[40] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro 2002 Phys. Rev. B 65 165401
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[43] Zhang C X, Li Q, Tang L M, Yang K, Xiao J, Chen K Q and Deng H X 2019 J. Mater. Chem. C 7 6052
[44] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China Phys. Mech. Astron. 63 276811
[45] Dong J, Zhang B, Zhang S, Sun Y and Long M 2022 Appl. Surf. Sci. 579 152155
[46] Qiu Y and Zhang B 2023 Phys. Chem. Chem. Phys. 25 27448
[47] Zhang B, Zhang S and Zhang G 2023 Nanoscale Microscale Thermophys. Eng. 27 168
[48] Zhang B 2022 Appl. Surf. Sci. 597 153722
[1] Anomalous lattice vibration in monolayer MoS2 induced by DUV laser: A first-principles investigation
Weidong Wang(王卫东), Renhui Liu(刘仁辉), Ye Zhang(张也), Huaihong Guo(郭怀红), Jianqi Huang(黄建啟), Zhantong Liu(刘展彤), Heting Zhao(赵贺霆), Kai Wang(王凯), Bo Zhao(赵波), and Teng Yang(杨腾). Chin. Phys. B, 2025, 34(6): 066301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[6] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[10] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[11] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[12] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[13] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[14] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[15] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
No Suggested Reading articles found!