|
|
|
Bond-resolved silicene on Au(111) substrate |
| Ye Chen(陈烨)1, Wenya Zhai(翟文雅)1, Haoyuan Zang(臧浩原)1, Zengfu Ou(欧增福)2, Donghui Guo(郭东辉)1,†, and Jingcheng Li(李竟成)1,‡ |
1 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China |
|
|
|
|
Abstract Silicene, a silicon analog of graphene, holds promise for next-generation electronics due to its tunable bandgap and larger spin-orbit coupling. Despite extensive efforts to synthesize and characterize silicene on metal substrates, bond-resolved imaging of its atomic structure has remained elusive. Here, we report the fabrication and bond-resolved characterization of silicene on Au(111) substrate. Three silicene phases tuned by surface reconstruction and annealing temperatures are achieved. Using CO-terminated scanning tunneling microscopy (STM) tips, we resolve these silicene phases with atomic precision, determining their bond lengths, local strain, and geometric configurations. Furthermore, we correlate these structural features with their electronic properties, revealing the effect of strain and substrate interactions on the electronic properties of silicene. This work establishes silicene's intrinsic bonding topology and resolves longstanding controversies in silicene research.
|
Received: 02 May 2025
Revised: 28 June 2025
Accepted manuscript online: 10 July 2025
|
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
| |
82.75.Fq
|
(Synthesis, structure determination, structure modeling)
|
| |
61.46.-w
|
(Structure of nanoscale materials)
|
| |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12474181), the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B0301030002 and 2024A1515010656), and the Guangdong Science and Technology Project (Grant No. 2021QN02X859). The experiments reported were conducted at the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008). |
Corresponding Authors:
Donghui Guo, Jingcheng Li
E-mail: guodonghui@mail.sysu.edu.cn;lijch73@mail.sysu.edu.cn
|
Cite this article:
Ye Chen(陈烨), Wenya Zhai(翟文雅), Haoyuan Zang(臧浩原), Zengfu Ou(欧增福), Donghui Guo(郭东辉), and Jingcheng Li(李竟成) Bond-resolved silicene on Au(111) substrate 2025 Chin. Phys. B 34 096801
|
[1] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 [2] Jose D and Datta A 2014 Chem. Res. 47 593 [3] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [4] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113 [5] Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853 [6] Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X and Dou S X 2014 ACS Nano 8 10019 [7] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101 [8] Zhao J, Liu H, Yu Z, Quhe R, Zhou S,Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24 [9] Shan G, Tan H, Ma R, Zhao H and Huang W 2023 Nanoscale 15 2982 [10] Liu M, Cheng Z, Zhang X, Li Y, Jin L, Liu C, Dai X, Liu Y, Wang X and Liu G 2023 Chin. Phys. B 32 096303 [11] Xie H, Lü X L and Yang J E 2023 Chin. Phys. B 33 018502 [12] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227 [13] Man Q, An Y, Shen H, Wei C, Xiong S and Feng J 2023 Mater. Today 67 566 [14] Masson L and Prévot G 2023 Nanoscale Adv. 5 1574 [15] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [16] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 [17] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802 [18] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys.: Condens. Matter 24 172001 [19] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804 [20] Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211 [21] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada- Takamura Y 2012 Phys. Rev. Lett. 108 245501 [22] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685 [23] Aizawa T, Suehara S and Otani S 2014 J. Phys. Chem. C 118 23049 [24] De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, Abbarchi M, Ronda A, Jardali F, Park J and Vach H 2016 ACS Nano 10 11163 [25] Huang L, Zhang Y F, Zhang Y Y, XuW, Que Y, Li E, Pan J B,Wang Y L, Liu Y, Du S X, Pantelides S T and Gao H J 2017 Nano Lett. 17 1161 [26] Sadeddine S, Enriquez H, Bendounan A, Kumar Das P, Vobornik I, Kara A, Mayne A J, Sirotti F, Dujardin G and Oughaddou H 2017 Sci. Rep. 7 44400 [27] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y, Du S, Ouyang M, Pantelides S T and Gao H 2018 Adv. Mater. 30 1804650 [28] Stepniak-Dybala A, Dyniec P, Kopciuszyski M, Zdyb R, Jałochowski M and Krawiec M 2019 Adv. Funct. Mater. 29 1906053 [29] Stępniak-Dybala A and Krawiec M 2019 J. Phys. Chem. C 123 17019 [30] Nicholls D, Fatima, Ç akır D and Oncel N 2019 J. Phys. Chem. C 123 7225 [31] Wiggers F B, Fleurence A, Aoyagi K, Yonezawa T, Yamada-Takamura Y, Feng H, Zhuang J, Du Y, Kovalgin A Y and De Jong M P 2019 2D Mater. 6 035001 [32] Sato Y, Fukaya Y, Cameau M, Kundu A K, Shiga D, Yukawa R, Horiba K, Chen C H, Huang A, Jeng H T, Ozaki T, Kumigashira H, Niibe M and Matsuda I 2020 Phys. Rev. Mater. 4 064005 [33] Leoni T, Hogan C, Zhang K, Daher Mansour M, Bernard R, Parret R, Resta A, Colonna S, Borensztein Y, Ronci F, Prévot G and Masson L 2021 J. Phys. Chem. C 125 17906 [34] Kopciuszyński M, Stępniak-Dybala A, Zdyb R and Krawiec M 2024 Nano Lett. 24 2175 [35] Stępniak-Dybala A and Krawiec M 2025 Surf. Interfaces 59 105937 [36] Deniz O, Sánchez-Sánchez C, Dumslaff T, Feng X, Narita A, Müllen K, Kharche N, Meunier V, Fasel R and Ruffieux P 2017 Nano Lett. 17 2197 [37] Pawlak R, Drechsel C, D’Astolfo P, Kisiel M, Meyer E and Cerda J I 2020 Proc. Natl. Acad. Sci. USA 117 228 [38] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez- Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [39] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088 [40] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297 [41] Liu Z L, Wang M X, Xu J P, Ge J F, Lay G L, Vogt P, Qian D, Gao C L, Liu C and Jia J F 2014 New J. Phys. 16 075006 [42] Jamgotchian H, Ealet B, Colignon Y, Maradj H, Hoarau J Y, Biberian J P and Aufray B 2015 J. Phys.: Condens. Matter 27 395002 [43] Nazzari D, Genser J, Ritter V, Bethge O, Bertagnolli E, Ramer G, Lendl B,Watanabe K, Taniguchi T, Rurali R, Kolíbal M and Lugstein A 2021 J. Phys. Chem. C 125 9973 [44] Zhao H 2012 Phys. Lett. A 376 3546 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|