Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016201    DOI: 10.1088/1674-1056/acf997
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation

Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山)
Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
Abstract  Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation. The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni, where perfect, stair-rod and Shockley dislocations are activated at $(1\bar{1}1)$, $(\bar{1}11)$ and $(11\bar{1})$ slip planes in nt-Ni compared to only Shockley dislocation nucleation at $(1\bar{1}1)$ and $(\bar{1}11)$ slip planes of nc-Ni. The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary. The atomic deformation associated with the indentation size effect is investigated during dislocation transmission. Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature, the temperature-dependent atomic deformation of nt-Ni is closely related to the twin boundary: from the partial slips parallel to the twin boundary (~10 K), to increased confined layer slips and decreased twin migration(300 K—600 K), to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K—1200 K). Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration. Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.
Keywords:  nanoindentation      twin boundary      plastic deformation      molecular dynamics simulation  
Received:  18 July 2023      Revised:  27 August 2023      Accepted manuscript online:  14 September 2023
PACS:  62.20.F- (Deformation and plasticity)  
  61.72.Mm (Grain and twin boundaries)  
  02.70.Ns (Molecular dynamics and particle methods)  
  68.35.bd (Metals and alloys)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11572090).
Corresponding Authors:  Yushan Ni     E-mail:  niyushan@fudan.edu.cn

Cite this article: 

Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山) Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation 2024 Chin. Phys. B 33 016201

[1] Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X 2004 Science 305 5684
[2] Yang L W, Wang C Y, Monclús M A, Lu L, Molina-Aldareguía J M and Llorca J 2018 Scr. Mater. 154 54
[3] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2010 Nature 464 877
[4] Lu K, Lu L and Suresh S 2009 Science 324 349
[5] Zhou H F, Li X Y, Qu S X, Yang W and Gao H J 2014 Nano Lett. 14 5075
[6] Lu N D, Du K, Lu L and Ye H Q 2015 Nat. Commun. 6 7648
[7] Taheri M S M, Zhou H F, Zou G J and Gao H J 2019 npj Comput. Mater. 5 2
[8] Zhao S T, Zhang R P, Yu Q, Ell J, Ritchie R O and Minor A M 2021 Science 373 1363
[9] Larranaga M, Lartigue-Korinek S, Legros M, Combe N and Mompiou F 2023 Acta Mater. 251 118877
[10] Shabib I and Miller R 2009 Model. Simul. Mater. Sci. Eng. 17 055009
[11] Huang K X, Yao J P, Hu Q Y, Shao L T and Sun Z 2019 IOP Conf. Ser.:Mater. Sci. Eng. 484 012018
[12] Sinha T and Kulkarni Y 2011 J. Appl. Phys. 109 114315
[13] Fu T, Peng X H, Chen X, Weng S Y, Hu N, Li Q B and Wang Z C 2016 Sci. Rep. 6 35665
[14] Liu Y, Jian J, Chen Y X, Wang H Y and Zhang X H 2014 Appl. Phys. Lett. 104 231910
[15] Li L and Ortiz C 2014 Nat. Mater. 13 501
[16] Brons J G, Hardwick J A, Padilla H A, Hattar K, Thompson G B and Boyce B L 2014 Mater. Sci. Eng. A 592 182
[17] Yang X S, Zhai H R, Ruan H H, Shi S Q and Zhang T Y 2018 Int. J. Plast. 104 68
[18] Nix W D and Gao H J 1998 J. Mech. Phys. Solids 46 411
[19] Manika I and Maniks J 2006 Acta Mater. 54 2049
[20] Duan F H, Lin Y, Pan J, Zhao L, Guo Q, Zhang D and Li Y 2021 Sci. Adv. 7 eabg5113
[21] Ledbetter H M and Naimon E R 1974 J. Phys. Chem. Ref. Data 3 897
[22] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[23] Adams J B, Foiles S M and Wolfer W G 1989 J. Mater. Res. 4 102
[24] Plimpton S 1995 J. Comput. Phys. 117 1
[25] Baskes M I 1987 Phys. Rev. Lett. 59 2666
[26] Baskes M 1992 Physical Review B 46 2727
[27] Andric P and Curtin W 2017 J. Mech. Phys. Solids 106 315
[28] Yin S, Cheng G M, Zhu Y and Gao H J 2020 Phys. Rev. Mater. 4 023603
[29] Curnan M T, Shin D, Saidi W A, Yang J C and Han J W 2022 Acta Mater. 226 117635
[30] Landman U, Luedtke W, Burnham N A and Colton R J 1990 Science 248 454
[31] Sahputra I H 2021 Eur. Phys. J. B 94 237
[32] Zhang J, Liu C, Shu Y H and Fan J 2012 Appl. Surf. Sci. 261 690
[33] Wagih M, Larsen P M and Schuh C A 2020 Nat. Commun. 11 6376
[34] Wolf D 2001 Curr. Opin. Solid State Mater. Sci. 5 435
[35] Simonnin P, Schreiber D K and Rosso K M 2021 Mater. Today Commun. 26 101982
[36] Keblinski P and Yamakov V 2003 Interface Sci. 11 111
[37] Zhang J, Liu C and Fan J 2013 Appl. Surf. Sci. 276 417
[38] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[39] Stukowski A and Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 085001
[40] Jayaganthan R, Mohankumar K and Tay A A O 2005 Int. J. Nanosci. 4 197
[41] Zhang X F, Fujita T, Pan D, Yu J S, Sakurai T and Chen M W 2010 Mater. Sci. Eng. A 527 2297
[42] Zong Z, Lou J, Adewoye O O, Elmustafa A, Hammad F and Soboyejo W 2007 Mater. Manufact. Processes 22 228
[43] Voyiadjis G Z and Yaghoobi M 2017 Crystals 7 321
[44] He G C, Xu C, Liu C, Liu H P and Wang H K 2019 Appl. Surf. Sci. 480 349
[45] Swain M V 1998 Materials Science and Engineering 253 160
[46] Hu X W, Ni Y S and Zhang Z L 2020 Nanomaterials 10 221
[47] Yan Y P, Zhou S R and Liu S 2017 Comput. Mater. Sci. 130 16
[48] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 116201
[49] Norman F and John W H 2001 J. Mech. Phys. Solids 49 2245
[50] Franke O, Trenkle J C and Schuh C A 2010 J. Mater. Res. 25 1225
[51] Chua Janel, Zhang R P, Chaudhari A, Vachhani S J, Kumar A S, Tu Q S and Wang H 2019 Int. J. Mech. Sci. 159 459
[52] Petrík J, Blaško P, Mihaliková M, Vasilňáková A and Mikloš V 2019 Metallurg. Res. Technol. 116 622
[53] TANG Bill T F, Zhou Y J, Zabev T, Brooks I and Erb U 2015 J. Mater. Res. 30 3528
[54] Guo X K, Luo Z P, Li X Y and Lu K 2021 Mater. Sci. Eng. A 802 140664
[55] Ahn D H, Kang M J, Park L J, Lee S and Kim H S 2017 Mater. Sci. Eng. A 684 567
[56] Kappacher J, Tkadletz M, Clemens H and Maier-Kiener V 2021 Materialia 16 101084
[57] Robinson J, Verma A, Homer E R and Thompson G B 2023 Mater. Sci. Eng. A 871 144866
[58] Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S and Kecskes L 2009 Appl. Phys. Lett. 95 031909
[59] Zhu Y T, Wu X L, Liao X Z, Narayan J, Kecskes L and Mathaudhu S 2011 Acta Mater. 59 812
[1] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[4] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[5] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[6] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[7] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[8] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[9] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[12] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
No Suggested Reading articles found!