CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation |
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山)† |
Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China |
|
|
Abstract Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation. The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni, where perfect, stair-rod and Shockley dislocations are activated at $(1\bar{1}1)$, $(\bar{1}11)$ and $(11\bar{1})$ slip planes in nt-Ni compared to only Shockley dislocation nucleation at $(1\bar{1}1)$ and $(\bar{1}11)$ slip planes of nc-Ni. The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary. The atomic deformation associated with the indentation size effect is investigated during dislocation transmission. Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature, the temperature-dependent atomic deformation of nt-Ni is closely related to the twin boundary: from the partial slips parallel to the twin boundary (~10 K), to increased confined layer slips and decreased twin migration(300 K—600 K), to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K—1200 K). Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration. Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.
|
Received: 18 July 2023
Revised: 27 August 2023
Accepted manuscript online: 14 September 2023
|
PACS:
|
62.20.F-
|
(Deformation and plasticity)
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
68.35.bd
|
(Metals and alloys)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11572090). |
Corresponding Authors:
Yushan Ni
E-mail: niyushan@fudan.edu.cn
|
Cite this article:
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山) Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation 2024 Chin. Phys. B 33 016201
|
[1] Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X 2004 Science 305 5684 [2] Yang L W, Wang C Y, Monclús M A, Lu L, Molina-Aldareguía J M and Llorca J 2018 Scr. Mater. 154 54 [3] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2010 Nature 464 877 [4] Lu K, Lu L and Suresh S 2009 Science 324 349 [5] Zhou H F, Li X Y, Qu S X, Yang W and Gao H J 2014 Nano Lett. 14 5075 [6] Lu N D, Du K, Lu L and Ye H Q 2015 Nat. Commun. 6 7648 [7] Taheri M S M, Zhou H F, Zou G J and Gao H J 2019 npj Comput. Mater. 5 2 [8] Zhao S T, Zhang R P, Yu Q, Ell J, Ritchie R O and Minor A M 2021 Science 373 1363 [9] Larranaga M, Lartigue-Korinek S, Legros M, Combe N and Mompiou F 2023 Acta Mater. 251 118877 [10] Shabib I and Miller R 2009 Model. Simul. Mater. Sci. Eng. 17 055009 [11] Huang K X, Yao J P, Hu Q Y, Shao L T and Sun Z 2019 IOP Conf. Ser.:Mater. Sci. Eng. 484 012018 [12] Sinha T and Kulkarni Y 2011 J. Appl. Phys. 109 114315 [13] Fu T, Peng X H, Chen X, Weng S Y, Hu N, Li Q B and Wang Z C 2016 Sci. Rep. 6 35665 [14] Liu Y, Jian J, Chen Y X, Wang H Y and Zhang X H 2014 Appl. Phys. Lett. 104 231910 [15] Li L and Ortiz C 2014 Nat. Mater. 13 501 [16] Brons J G, Hardwick J A, Padilla H A, Hattar K, Thompson G B and Boyce B L 2014 Mater. Sci. Eng. A 592 182 [17] Yang X S, Zhai H R, Ruan H H, Shi S Q and Zhang T Y 2018 Int. J. Plast. 104 68 [18] Nix W D and Gao H J 1998 J. Mech. Phys. Solids 46 411 [19] Manika I and Maniks J 2006 Acta Mater. 54 2049 [20] Duan F H, Lin Y, Pan J, Zhao L, Guo Q, Zhang D and Li Y 2021 Sci. Adv. 7 eabg5113 [21] Ledbetter H M and Naimon E R 1974 J. Phys. Chem. Ref. Data 3 897 [22] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393 [23] Adams J B, Foiles S M and Wolfer W G 1989 J. Mater. Res. 4 102 [24] Plimpton S 1995 J. Comput. Phys. 117 1 [25] Baskes M I 1987 Phys. Rev. Lett. 59 2666 [26] Baskes M 1992 Physical Review B 46 2727 [27] Andric P and Curtin W 2017 J. Mech. Phys. Solids 106 315 [28] Yin S, Cheng G M, Zhu Y and Gao H J 2020 Phys. Rev. Mater. 4 023603 [29] Curnan M T, Shin D, Saidi W A, Yang J C and Han J W 2022 Acta Mater. 226 117635 [30] Landman U, Luedtke W, Burnham N A and Colton R J 1990 Science 248 454 [31] Sahputra I H 2021 Eur. Phys. J. B 94 237 [32] Zhang J, Liu C, Shu Y H and Fan J 2012 Appl. Surf. Sci. 261 690 [33] Wagih M, Larsen P M and Schuh C A 2020 Nat. Commun. 11 6376 [34] Wolf D 2001 Curr. Opin. Solid State Mater. Sci. 5 435 [35] Simonnin P, Schreiber D K and Rosso K M 2021 Mater. Today Commun. 26 101982 [36] Keblinski P and Yamakov V 2003 Interface Sci. 11 111 [37] Zhang J, Liu C and Fan J 2013 Appl. Surf. Sci. 276 417 [38] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [39] Stukowski A and Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 085001 [40] Jayaganthan R, Mohankumar K and Tay A A O 2005 Int. J. Nanosci. 4 197 [41] Zhang X F, Fujita T, Pan D, Yu J S, Sakurai T and Chen M W 2010 Mater. Sci. Eng. A 527 2297 [42] Zong Z, Lou J, Adewoye O O, Elmustafa A, Hammad F and Soboyejo W 2007 Mater. Manufact. Processes 22 228 [43] Voyiadjis G Z and Yaghoobi M 2017 Crystals 7 321 [44] He G C, Xu C, Liu C, Liu H P and Wang H K 2019 Appl. Surf. Sci. 480 349 [45] Swain M V 1998 Materials Science and Engineering 253 160 [46] Hu X W, Ni Y S and Zhang Z L 2020 Nanomaterials 10 221 [47] Yan Y P, Zhou S R and Liu S 2017 Comput. Mater. Sci. 130 16 [48] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 116201 [49] Norman F and John W H 2001 J. Mech. Phys. Solids 49 2245 [50] Franke O, Trenkle J C and Schuh C A 2010 J. Mater. Res. 25 1225 [51] Chua Janel, Zhang R P, Chaudhari A, Vachhani S J, Kumar A S, Tu Q S and Wang H 2019 Int. J. Mech. Sci. 159 459 [52] Petrík J, Blaško P, Mihaliková M, Vasilňáková A and Mikloš V 2019 Metallurg. Res. Technol. 116 622 [53] TANG Bill T F, Zhou Y J, Zabev T, Brooks I and Erb U 2015 J. Mater. Res. 30 3528 [54] Guo X K, Luo Z P, Li X Y and Lu K 2021 Mater. Sci. Eng. A 802 140664 [55] Ahn D H, Kang M J, Park L J, Lee S and Kim H S 2017 Mater. Sci. Eng. A 684 567 [56] Kappacher J, Tkadletz M, Clemens H and Maier-Kiener V 2021 Materialia 16 101084 [57] Robinson J, Verma A, Homer E R and Thompson G B 2023 Mater. Sci. Eng. A 871 144866 [58] Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S and Kecskes L 2009 Appl. Phys. Lett. 95 031909 [59] Zhu Y T, Wu X L, Liao X Z, Narayan J, Kecskes L and Mathaudhu S 2011 Acta Mater. 59 812 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|