Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044701    DOI: 10.1088/1674-1056/ad08a7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel

Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣)
Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
Abstract  Shear-thinning fluids have been widely used in microfluidic systems, but their internal flow mechanism is still unclear. Therefore, in this paper, molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel. We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers. The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids. The velocity profile resembles a top-hat shape, intensifying as the fluid's power law index decreases. The interaction energy between the wall and the fluid decreases gradually with increasing velocity, and a high concentration of non-Newtonian fluid reaches a plateau sooner. Moreover, the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional. By analyzing the radial distribution function, we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity. This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.
Keywords:  molecular dynamics simulation      non-Newtonian fluid      microchannel      shear-thinning  
Received:  28 August 2023      Revised:  20 October 2023      Accepted manuscript online:  02 November 2023
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  52.65.Yy (Molecular dynamics methods)  
  83.60.Rs (Shear rate-dependent structure (shear thinning and shear thickening))  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51775077 and 51909023).
Corresponding Authors:  Huichen Zhang     E-mail:  hczhang@dlmu.edu.cn

Cite this article: 

Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣) Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel 2024 Chin. Phys. B 33 044701

[1] Nair R and Choudhury A R 2020 Int. J. Biol. Macromol. 159 922
[2] Yang Z C, Bi Q C, Liu B and Huang K X 2010 Int. J. Multiph. Flow 36 60
[3] Laporte M, Montillet A, Belkadi A, Valle D D, Loisel C, Riaublanc A and Hauser J L 2020 Chem. Eng. Process. 148 107787
[4] Megahed A M 2013 Chin. Phys. B 22 974701
[5] Nazir S and Kwon O S 2022 Appl. Sci. Converg. Technol. 31 40
[6] Economidou S N, Uddin M J, Marques M J, Douroumis D, Sow W T, Li H, Reid A, Windmill J F C and Podoleanu A 2021 Addit. Manuf. 38 101815
[7] Luo T, Fan L, Zhu R and Sun D 2019 Micromachines 10 104
[8] Lee C Y, Chang C L, Wang Y N and Fu L M 2011 Int. J. Mol. Sci. 12 3263
[9] Kawahara A, Yonemoto Y and Arakaki Y 2020 Flow Turbul. Combust. 105 1325
[10] Mansour M H, Kawahara A and Sadatomi M 2015 Int. J. Multiph. Flow 72 263
[11] Ansari S, Rashid M A I, Waghmare P R and Nobes D S 2020 SN Appl. Sci. 2 1787
[12] Miansari M, Aghajani H, Zarringhalam M and Toghraie D 2020 J. Therm. Anal. Calorim. 144 179
[13] Wu W W, Sun S L, Wang Z Z and Ding S 2019 Mech. Mater. 139 103187
[14] Lemarchand C A, Bailey N P, Todd B D, Daivis P J and Hansen J S 2015 J. Chem. Phys. 142 244501
[15] Chen K H, Wang Y, Xuan S H and Gong X L 2017 J. Colloid Interface Sci. 497 378
[16] Bidault X, Chaussedent S, Blanc W and Neuville D R 2016 J. Non-Cryst. Solids 433 38
[17] Blanco-Díaz E G, Castrejón-González E O, Alvarado J F J, Estrada-Baltazar A and Castillo-Borja F 2017 J. Mol. Liq. 242 265
[18] Yang G, Zheng T, Cheng Q H and Zhang H C 2021 Acta Phys. Sin. 70 124701 (in Chinese)
[19] Wang B, Cavallo D and Chen J B 2020 Polym. J. 210 123000
[20] Castillo-Tejas J, Castrejón-González O, Carro S, González-Coronel V, Alvarado J F J and Manero O 2016 Colloids Surf. A-Physicochem. Eng. Asp. 491 37
[21] Sun H J 1998 J. Phys. Chem. B 102 7338
[22] Ewald P P 1921 Ann. Phys. 369 253
[23] Cao B Y, Chen M and Guo Z Y 2006 Phys. Rev. E 74 066311
[24] Abiev R S 2022 Chem. Eng. Sci. 250 117380
[25] Yang G, Feng K and Zhang H C 2023 Chem. Eng. Res. Des. 197 405
[26] Lewis J M and Wang Y 2019 Int. J. Heat Mass Transf. 128 649
[27] Cao Z, Wu Z and Sundén B 2018 Chem. Eng. J. 344 604
[28] Mondal S and Majumder S K 2018 Exp. Therm. Fluid Sci. 94 215
[29] Alipour P, Toghraie D, Karimipour A and Hajian M 2019 J. Mol. Liq. 275 192
[30] Faraji F, Rajabpour A and Kowsary F 2016 J. Mech. Sci. Technol. 30 803
[31] Feng K and Zhang H C 2021 Chem. Eng. Res. Des. 173 158
[32] Abiev R S 2022 Chem. Eng. Sci. 247 116930
[33] Zhang Z Q, Zhang H W and Ye H F 2009 Appl. Phys. Lett. 95 154101
[34] Semiromi D T and Azimian A R 2010 Heat Mass Transf. 46 791
[35] Li J, Zhu P, Sheng Y Y, Liu L and Luo Y 2021 Chin. Phys. B 30 080205
[36] Kumar R, Schmidt J R and Skinner J L 2007 J. Chem. Phys. 126 204107
[1] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[2] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[3] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[4] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[5] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[6] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[7] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[8] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[9] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[10] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[13] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[14] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!