CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic effects on radiation damage in α-iron: A molecular dynamics study |
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超)†, and Qing Hou(侯氢)‡ |
Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China |
|
|
Abstract Iron (Fe)-based alloys, which have been widely used as structural materials in nuclear reactors, can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation, thus, the problems associated with the safe operation of nuclear reactors have been put forward naturally. In this work, a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process in α-Fe. Specifically, the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe. The simulation results reveal that both electronic stopping (ES) and electron-phonon coupling (EPC) can contribute to the decrease of the number of defects in the thermal spike phase. The application of ES reduces the number of residual defects after the cascade evolution, whereas EPC has a reverse effect. The introduction of electronic effects promotes the formation of the dispersive subcascade: ES significantly changes the geometry of the damaged region in the thermal spike phase, whereas EPC mainly reduces the extent of the damaged region. Furthermore, the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
|
Received: 26 July 2023
Revised: 20 November 2023
Accepted manuscript online: 22 November 2023
|
PACS:
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
61.72.J-
|
(Point defects and defect clusters)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant Nos. 2022YFE03200200 and 2018YFE0308101), the National Natural Science Foundation of China (Grant No. 12105194), and the Natural Science Foundation of Sichuan Province, China (Grant Nos. 2022NSFSC1265 and 2022NSFSC1251). |
Corresponding Authors:
Jie-Chao Cui, Qing Hou
E-mail: jiechaocui@scu.edu.cn;qhou@scu.edu.cn
|
Cite this article:
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢) Electronic effects on radiation damage in α-iron: A molecular dynamics study 2024 Chin. Phys. B 33 036103
|
[1] Zinkle S J and Was G S 2013 Acta Mater. 61 735 [2] Cui J, Zhou Z, Fu B and Hou Q 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 471 90 [3] Khan M Z H, Khanal L and Qiang Y 2020 Materialia 14 100930 [4] Sahi Q U A and Kim Y S 2018 Mater. Res. Express 5 046518 [5] Duffy D M and Rutherford A M 2007 J. Phys.: Condens. Matter 19 016207 [6] Rutherford A M and Duffy D M 2007 J. Phys.: Condens. Matter 19 496201 [7] Zarkadoula E, Samolyuk G and Weber W J 2017 J. Nucl. Mater. 490 317 [8] Zarkadoula E, Samolyuk G, Xue H, Bei H and Weber W J 2016 Scr. Mater. 124 6 [9] Lang L, Deng H, Tao J, Yang T, Lin Y and Hu W 2022 Chin. Phys. B 31 126102 [10] Ouyang W H, Liu J B, Lai W S, Li J H and Liu B X 2023 Chin. Phys. B 32 036101 [11] Eckstein W 1991 Computer simulation of ion-solid interactions 1st edn. (Berlin: Springer) pp. 63-72 [12] Finnis M W, Agnew P and Foreman A J E 1991 Phys. Rev. B 44 567 [13] Duffy D M, Khakshouri S and Rutherford A M 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3050 [14] Zarkadoula E, Daraszewicz S L, Duffy D M, Seaton M A, Todorov I T, Nordlund K, Dove M T and Trachenko K 2013 J. Phys.: Condens. Matter 25 125402 [15] Zhou Z, Fu B, Zhang K, Hou Q, Cui J, Wu L and Pan R 2020 Nucl. Mater. Energy 24 100787 [16] Osetsky Y N, Calder A F and Stoller R E 2015 Curr. Opin. Solid State Mat. Sci. 19 277 [17] Calder A F, Bacon D J, Barashev A V and Osetsky Y N 2010 Philos. Mag. 90 863 [18] Béland L K, Osetsky Y N and Stoller R E 2016 npj Comput. Mater. 2 16007 [19] Hou Q, Hou M, Bardotti L, Pré B, Mé P and Perez A 2000 Phys. Rev. B 62 2825 [20] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818 [21] Zhong Y, Nordlund K, Ghaly M and Averback R S 1998 Phys. Rev. B 58 2361 [22] Granberg F, Byggmästar J and Nordlund K 2021 J. Nucl. Mater. 556 153158 [23] Hou Q, Li M, Zhou Y, Cui J, Cui Z and Wang J 2013 Comput. Phys. Commun. 184 2091 [24] Malerba L, Marinica M C, Anento N, Björkas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19 [25] Marinica M C, Willaime F and Crocombette J P 2012 Phys. Rev. Lett. 108 025501 [26] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977 [27] Willaime F, Fu C C, Marinica M C and Dalla Torre J 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 228 92 [28] Domain C and Monnet G 2005 Phys. Rev. Lett. 95 215506 [29] Tschopp M A, Horstemeyer M F, Gao F, Sun X and Khaleel M 2011 Scr. Mater. 64 908 [30] Bonny G, Terentyev D, Bakaev A, Zhurkin E E, Hou M, Van Neck D and Malerba L 2013 J. Nucl. Mater. 442 282 [31] Guo X, Li H, Wang J, Liu C, Xu J, Xi Y and Wu J 2023 Phys. Scr. 98 015003 [32] Zhang Y, Bai X M, Tonks M R and Biner S B 2015 Scr. Mater. 98 5 [33] Chartier A and Marinica M C 2019 Acta Mater. 180 141 [34] Dérés J, Proville L and Marinica M C 2015 Acta Mater. 99 99 [35] Kittel C 2005 Introduction to solid state physics, 8th edn. (New York: John Wiley & Sons, Inc) [36] Olsson P, Domain C and Wallenius J 2007 Phys. Rev. B 75 014110 [37] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503 [38] Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 246 322 [39] Olsson P, Becquart C S and Domain C 2016 Mater. Res. Lett. 4 219 [40] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684 [41] Zou P F and Bader R F W 1994 Acta Cryst. A 50 714 [42] Stukowski A and Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 025016 [43] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007 [44] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [45] Gao F, Bacon D J, Flewitt E J and Lewis T A 1998 Model. Simul. Mater. Sci. Eng. 6 543 [46] Björkas C and Nordlund K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1830 [47] Stoller R E 2000 J. Nucl. Mater. 276 22 [48] Stoller R E 2001 Mat. Res. Soc. Symp. 650 351 [49] Yang X, Zeng X, Chen L, Guo Y, Chen H and Wang F 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 436 92 [50] Sand A E, Nordlund K and Dudarev S L 2014 J. Nucl. Mater. 455 207 [51] Antoshchenkova E, Luneville L, Simeone D, Stoller R E and Hayoun M 2015 J. Nucl. Mater. 458 168 [52] Zhou W, Tian J, Feng Q, Zheng J, Liu X, Xue J, Qian D and Peng S 2018 J. Nucl. Mater. 508 540 [53] Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D and Kurtz R J 2015 J. Phys.: Condes. Matter 27 225402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|