Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 036103    DOI: 10.1088/1674-1056/ad0ec4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic effects on radiation damage in α-iron: A molecular dynamics study

Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢)
Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  Iron (Fe)-based alloys, which have been widely used as structural materials in nuclear reactors, can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation, thus, the problems associated with the safe operation of nuclear reactors have been put forward naturally. In this work, a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process in α-Fe. Specifically, the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe. The simulation results reveal that both electronic stopping (ES) and electron-phonon coupling (EPC) can contribute to the decrease of the number of defects in the thermal spike phase. The application of ES reduces the number of residual defects after the cascade evolution, whereas EPC has a reverse effect. The introduction of electronic effects promotes the formation of the dispersive subcascade: ES significantly changes the geometry of the damaged region in the thermal spike phase, whereas EPC mainly reduces the extent of the damaged region. Furthermore, the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
Keywords:  radiation damage      electronic effects      molecular dynamics simulation      α -iron  
Received:  26 July 2023      Revised:  20 November 2023      Accepted manuscript online:  22 November 2023
PACS:  61.80.Az (Theory and models of radiation effects)  
  61.72.J- (Point defects and defect clusters)  
  63.20.kd (Phonon-electron interactions)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant Nos. 2022YFE03200200 and 2018YFE0308101), the National Natural Science Foundation of China (Grant No. 12105194), and the Natural Science Foundation of Sichuan Province, China (Grant Nos. 2022NSFSC1265 and 2022NSFSC1251).
Corresponding Authors:  Jie-Chao Cui, Qing Hou     E-mail:  jiechaocui@scu.edu.cn;qhou@scu.edu.cn

Cite this article: 

Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢) Electronic effects on radiation damage in α-iron: A molecular dynamics study 2024 Chin. Phys. B 33 036103

[1] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[2] Cui J, Zhou Z, Fu B and Hou Q 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 471 90
[3] Khan M Z H, Khanal L and Qiang Y 2020 Materialia 14 100930
[4] Sahi Q U A and Kim Y S 2018 Mater. Res. Express 5 046518
[5] Duffy D M and Rutherford A M 2007 J. Phys.: Condens. Matter 19 016207
[6] Rutherford A M and Duffy D M 2007 J. Phys.: Condens. Matter 19 496201
[7] Zarkadoula E, Samolyuk G and Weber W J 2017 J. Nucl. Mater. 490 317
[8] Zarkadoula E, Samolyuk G, Xue H, Bei H and Weber W J 2016 Scr. Mater. 124 6
[9] Lang L, Deng H, Tao J, Yang T, Lin Y and Hu W 2022 Chin. Phys. B 31 126102
[10] Ouyang W H, Liu J B, Lai W S, Li J H and Liu B X 2023 Chin. Phys. B 32 036101
[11] Eckstein W 1991 Computer simulation of ion-solid interactions 1st edn. (Berlin: Springer) pp. 63-72
[12] Finnis M W, Agnew P and Foreman A J E 1991 Phys. Rev. B 44 567
[13] Duffy D M, Khakshouri S and Rutherford A M 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3050
[14] Zarkadoula E, Daraszewicz S L, Duffy D M, Seaton M A, Todorov I T, Nordlund K, Dove M T and Trachenko K 2013 J. Phys.: Condens. Matter 25 125402
[15] Zhou Z, Fu B, Zhang K, Hou Q, Cui J, Wu L and Pan R 2020 Nucl. Mater. Energy 24 100787
[16] Osetsky Y N, Calder A F and Stoller R E 2015 Curr. Opin. Solid State Mat. Sci. 19 277
[17] Calder A F, Bacon D J, Barashev A V and Osetsky Y N 2010 Philos. Mag. 90 863
[18] Béland L K, Osetsky Y N and Stoller R E 2016 npj Comput. Mater. 2 16007
[19] Hou Q, Hou M, Bardotti L, Pré B, Mé P and Perez A 2000 Phys. Rev. B 62 2825
[20] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[21] Zhong Y, Nordlund K, Ghaly M and Averback R S 1998 Phys. Rev. B 58 2361
[22] Granberg F, Byggmästar J and Nordlund K 2021 J. Nucl. Mater. 556 153158
[23] Hou Q, Li M, Zhou Y, Cui J, Cui Z and Wang J 2013 Comput. Phys. Commun. 184 2091
[24] Malerba L, Marinica M C, Anento N, Björkas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19
[25] Marinica M C, Willaime F and Crocombette J P 2012 Phys. Rev. Lett. 108 025501
[26] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977
[27] Willaime F, Fu C C, Marinica M C and Dalla Torre J 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 228 92
[28] Domain C and Monnet G 2005 Phys. Rev. Lett. 95 215506
[29] Tschopp M A, Horstemeyer M F, Gao F, Sun X and Khaleel M 2011 Scr. Mater. 64 908
[30] Bonny G, Terentyev D, Bakaev A, Zhurkin E E, Hou M, Van Neck D and Malerba L 2013 J. Nucl. Mater. 442 282
[31] Guo X, Li H, Wang J, Liu C, Xu J, Xi Y and Wu J 2023 Phys. Scr. 98 015003
[32] Zhang Y, Bai X M, Tonks M R and Biner S B 2015 Scr. Mater. 98 5
[33] Chartier A and Marinica M C 2019 Acta Mater. 180 141
[34] Dérés J, Proville L and Marinica M C 2015 Acta Mater. 99 99
[35] Kittel C 2005 Introduction to solid state physics, 8th edn. (New York: John Wiley & Sons, Inc)
[36] Olsson P, Domain C and Wallenius J 2007 Phys. Rev. B 75 014110
[37] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[38] Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 246 322
[39] Olsson P, Becquart C S and Domain C 2016 Mater. Res. Lett. 4 219
[40] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
[41] Zou P F and Bader R F W 1994 Acta Cryst. A 50 714
[42] Stukowski A and Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 025016
[43] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[44] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[45] Gao F, Bacon D J, Flewitt E J and Lewis T A 1998 Model. Simul. Mater. Sci. Eng. 6 543
[46] Björkas C and Nordlund K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1830
[47] Stoller R E 2000 J. Nucl. Mater. 276 22
[48] Stoller R E 2001 Mat. Res. Soc. Symp. 650 351
[49] Yang X, Zeng X, Chen L, Guo Y, Chen H and Wang F 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 436 92
[50] Sand A E, Nordlund K and Dudarev S L 2014 J. Nucl. Mater. 455 207
[51] Antoshchenkova E, Luneville L, Simeone D, Stoller R E and Hayoun M 2015 J. Nucl. Mater. 458 168
[52] Zhou W, Tian J, Feng Q, Zheng J, Liu X, Xue J, Qian D and Peng S 2018 J. Nucl. Mater. 508 540
[53] Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D and Kurtz R J 2015 J. Phys.: Condes. Matter 27 225402
[1] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[2] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[3] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[4] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[5] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[6] Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
Bin Zhang(张彬), Hao Jiang(姜昊), Xiao-Dong Xu(徐晓东), Tao Ying(应涛), Zhong-Li Liu(刘中利), Wei-Qi Li(李伟奇), Jian-Qun Yang(杨剑群), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2024, 33(1): 016106.
[7] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[8] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[9] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[10] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[11] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[14] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[15] Proton induced radiation effect of SiC MOSFET under different bias
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(10): 108503.
No Suggested Reading articles found!