Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 036402    DOI: 10.1088/1674-1056/ad24d6
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass

Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟)
Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, Beijing 100875, China
Abstract  The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation. It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders, and this leads to an observation of a novel symmetry convergence phenomenon, which can be understood as an atomic structure manifestation of the ergodicity. Furthermore, in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters, but the degree of global connectivity among them.
Keywords:  metallic glass      crystallization      molecular dynamics simulation      local atomic clusters  
Received:  27 November 2023      Revised:  22 January 2024      Accepted manuscript online:  01 February 2024
PACS:  64.70.pe (Metallic glasses)  
  68.55.A- (Nucleation and growth)  
  64.60.aq (Networks)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 11804027).
Corresponding Authors:  Zhen-Wei Wu     E-mail:  zwwu@bnu.edu.cn

Cite this article: 

Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟) Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass 2024 Chin. Phys. B 33 036402

[1] Wang W H 2019 Prog. Mater. Sci. 106 100561
[2] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[3] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[4] Pauly S, Gorantla S, Wang G, Kühn U and Eckert J 2010 Nat. Mater. 9 473
[5] Inoue A 2000 Acta Mater. 48 279
[6] Wang Q, Liu C T, Yang Y, Dong Y D and Lu J 2011 Phys. Rev. Lett. 106 215505
[7] Liu X, Chen G, Hou H, Hui X, Yao K, Lu Z and Liu C 2008 Acta Mater. 56 2760
[8] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R and Wang W H 2003 Phys. Rev. Lett. 91 265501
[9] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H and Ma E 2004 Phys. Rev. Lett. 92 145502
[10] Chen G L, Liu X J, Hui X D, Hou H Y, Yao K F, Liu C T and Wadsworth J 2006 Appl. Phys. Lett. 88 203115
[11] Martin I, Ohkubo T, Ohnuma M, Deconihout B and Hono K 2004 Acta Mater. 52 4427
[12] Della Valle R G, Gazzillo D, Frattini R and Pastore G 1994 Phys. Rev. B 49 12625
[13] Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B and Robinson D S 2003 Phys. Rev. Lett. 90 195504
[14] Cheng Y and Ma E 2011 Prog. Mater. Sci. 56 379
[15] Li M, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[16] Wu Z W, Li M Z, Wang W H, Song W J and Liu K X 2013 J. Chem. Phys. 138 074502
[17] Jiang S Q, Wu Z W and Li M Z 2016 J. Chem. Phys. 144 154502
[18] Mokshin A V and Barrat J L 2008 Phys. Rev. E 77 021505
[19] Mokshin A V and Barrat J L 2010 Phys. Rev. E 82 021505
[20] Wu Y, Xu B, Sun Y and Guan P 2021 Chin. Phys. B 30 57103
[21] Cui S, Liu H and Peng H 2022 Chin. Phys. B 31 86108
[22] Liu K X, Liu W D, Wang J T, Yan H H, Li X J, Huang Y J, Wei X S and Shen J 2008 Appl. Phys. Lett. 93 081918
[23] Gao J A, Huang H S and Lv Y J 2021 Chin. Phys. B 30 66301
[24] Ye L M, Wu Z W, Liu K X, Tang X Z and Xiong X M 2016 Chin. Phys. B 25 068104
[25] Chen S Y, Wu Z W and Liu K X 2014 Chin. Phys. B 23 066802
[26] Cheng Y Q and Ma E 2008 Appl. Phys. Lett. 93 051910
[27] Wu Z W, Li M Z, Wang W H and Liu K X 2013 Phys. Rev. B 88 054202
[28] Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P and Wang W H 2017 Chin. Phys. B 26 016104
[29] Qiao Q, Wang J, Cai Z, Feng S, Song Z, Huo B, Li Z and Wang L M 2023 Chin. Phys. B 32 116401
[30] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[31] Plimpton S 1995 J. Comput. Phys. 117 1
[32] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[33] Yang L, Xia J H, Wang Q, Dong C, Chen L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R and Gerward L 2006 Appl. Phys. Lett. 88 241913
[34] Mendelev M I, Sordelet D J and Kramer M J 2007 J. Appl. Phys. 102 043501
[35] Finney J L and Bernal J D 1970 Proc. R. Soc. A: Math. Phys. Eng. Sci. 319 479
[36] Borodin V A 1999 Phil. Mag. A 79 1887
[37] Schroers J, Busch R, Masuhr A and Johnson W L 1999 Appl. Phys. Lett. 74 2806
[38] Schroers J, Johnson W L and Busch R 2000 Appl. Phys. Lett. 77 1158
[39] Pauly S, Liu G, Gorantla S, Wang G, Kühn U, Kim D and Eckert J 2010 Acta Mater. 58 4883
[40] Wu Z, Li F, Huo C, Li M, Wang W and Liu K 2016 Sci. Rep. 6 35967
[41] Sun G, Giovambattista N, Wang E and Xu L 2013 Soft Matter 9 11374
[42] Desgranges C and Delhommelle J 2018 Phys. Rev. Lett. 120 115701
[43] Desgranges C and Delhommelle J 2019 Phys. Rev. Lett. 123 195701
[44] Li F X and Li M Z 2017 J. Appl. Phys. 122 225103
[45] Wu Z W, Kob W, Wang W H and Xu L 2018 Nat. Commun. 9 5334
[1] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[4] Effect of overheating-induced minor addition on Zr-based metallic glasses
Fu Yang(杨福), Zhenxing Bo(薄振兴), Yao Huang(黄瑶), Yutian Wang(王雨田), Boyang Sun(孙博阳), Zhen Lu(鲁振), Baoan Sun(孙保安), Yanhui Liu(柳延辉), Weihua Wang(汪卫华), and Mingxiang Pan(潘明祥). Chin. Phys. B, 2024, 33(3): 036401.
[5] Purification of copper foils driven by single crystallization
Jin-Zong Kou(寇金宗), Meng-Ze Zhao(赵孟泽), Xing-Guang Li(李兴光), Meng-Lin He(何梦林), Fang-You Yang(杨方友), Ke-Hai Liu(刘科海), Qing-Qiu Cheng(成庆秋), Yun-Long Ren(任云龙), Can Liu(刘灿), Ying Fu(付莹), Mu-Hong Wu(吴慕鸿), Kai-Hui Liu(刘开辉), and En-Ge Wang(王恩哥). Chin. Phys. B, 2024, 33(2): 028101.
[6] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[7] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[8] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[9] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[10] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[11] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[12] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[13] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[14] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[15] A group of ductile metallic glasses prepared by modifying local structure of icosahedral quasicrystals
Qi Qiao(乔琪), Ji Wang(王吉), Zhengqing Cai(蔡正清), Shidong Feng(冯士东), Zhenqiang Song(宋贞强), Benke Huo(霍本科), Zijing Li(李子敬), and Li-Min Wang(王利民). Chin. Phys. B, 2023, 32(11): 116401.
No Suggested Reading articles found!