INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions |
Mengjiao Wu(吴梦娇)1,2, Huishu Ma(马慧姝)3, Haiping Fang(方海平)4, Li Yang(阳丽)1,†, and Xiaoling Lei(雷晓玲)4,‡ |
1 College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, China; 2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 3 Changzhou Vocational Institute of Mechatronic Technology, Professional Basic Department, Changzhou 213164, China; 4 School of Physics, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract The adsorption dynamics of double-stranded DNA (dsDNA) molecules on a graphene oxide (GO) surface are important for applications of DNA/GO functional structures in biosensors, biomedicine and materials science. In this work, molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules (from 4 bp to 24 bp) on the GO surface. The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface. For short dsDNA (4 bp) molecules, the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface. For long dsDNA molecules (from 8 bp to 24 bp) adsorption is stable. By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface, we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp. We attributed this behavior to the flexibility of dsDNA molecules. With increasing length, the flexibility of dsDNA molecules also increases, and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal. This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.
|
Received: 07 January 2022
Revised: 26 February 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
87.14.gk
|
(DNA)
|
|
68.47.Gh
|
(Oxide surfaces)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
34.35.+a
|
(Interactions of atoms and molecules with surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974366), the Fundamental Research Funds for the Central Universities, China, the Supercomputer Center of the Chinese Academy of Sciences, and the Shanghai Supercomputer Center of China. |
Corresponding Authors:
Li Yang, Xiaoling Lei
E-mail: yangli@mailbox.gxnu.edu.cn;leixiaoling@ecust.edu.cn
|
Cite this article:
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲) Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions 2023 Chin. Phys. B 32 018701
|
[1] Watson J D and Crick F H 1953 Cold Spring Harb. Symp. Quant. Biol. 18 123 [2] Saeed A A, Sanchez J L A, O'Sullivan C K and Abbas M N 2017 Bioelectrochemistry 118 91 [3] Li F, Zhang H, Dever B, Li X F and Le X C 2013 Bioconjug. Chem. 24 1790 [4] Hu Y F, Huang Z C, Liu B W and Liu J W 2021 ACS Appl. Nano Mater. 4 1377 [5] Epanchintseva A V, Gorbunova E A, Ryabchikova E I, Pyshnaya I A and Pyshnyi D V 2021 Nanomaterials 11 1178 [6] Banerjee A, Pons T, Lequeux N and Dubertret B 2016 Interface Focus 6 20160064 [7] Lv J Z, Liu S Y and Miao Y M 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 248 119254 [8] Hu O, Li Z Y, Tong Y L, Wang Q Y and Chen Z G 2021 Talanta 235 122763 [9] Liu B W, Salgado S, Maheshwari V and Liu J W 2016 Curr. Opin. Colloid Interface Sci. 26 41 [10] Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. 121 4879 [11] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P and Fan C H 2010 Adv. Funct. Mater. 20 453 [12] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y H 2010 Electroanalysis 22 1027 [13] Mukherjee S, Richtera L, Ashrafi A M, Adam V and Richtera L 2020 Processes 8 1636 [14] Cui L, Song Y L, Ke G L, Guan Z C, Zhang H M, Lin Y, Huang Y S, Zhu Z and Yang C J 2013 Chemistry 19 10442 [15] Qi L, Pan T H, Ou L L, Ye Z Q, Yu C L, Bao B J, Wu Z X, Cao D Y and Dai L M 2021 Commun. Biol. 4 214 [16] Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare E N, Padil V V T, Zarrabi A, Pourreza N, Miltyk W and Maiti T K 2020 Carbohydr. Polym. 250 116952 [17] Barot T, Rawtani D and Kulkarni P 2021 Rev. Adv. Mater. Sci. 60 173 [18] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906 [19] Tang L H, Chang H X, Liu Y and Li J H 2012 Adv. Funct. Mater. 22 3083 [20] Huang P J and Liu J W 2012 Anal. Chem. 84 4192 [21] Shahriari S, Sastry M, Panjikar S and Raman S R K 2021 Nanotechnol. Sci. Appl. 14 197 [22] Moshari M, Koirala D and Allen P B 2021 J. Solid State Electr. 25 1667 [23] Park J S, Goo N I and Kim D E 2014 Langmuir 30 12587 [24] Jin L L, Yang K, Yao K, Zhang S, Tao H Q, Lee S T, Liu Z and Peng R 2012 ACS Nano. 6 4864 [25] Patil A J, Vickery J L, Scott T B and Mann S 2009 Adv. Mater. 21 3159 [26] Lei H Z, Mi L J, Zhou X J, Chen J J, Hu J, Guo S W and Zhang Y 2011 Nanoscale 3 3888 [27] Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C N R 2009 Chem. Phys. Chem. 10 206 [28] Song B, Cuniberti G, Sanvito S and Fang H P 2012 Appl. Phys. Lett. 100 063101 [29] Kim S, Park C and Gang J 2015 J. Nanosci. Nanotechnol. 15 7913 [30] Zhao X C 2011 J. Phys. Chem. C 115 6181 [31] Kabelac M, Kroutil O, Predota M, Lankas F and Sip M 2012 Phys. Chem. Chem. Phys. 14 4217 [32] Zeng S W, Chen L, Wang Y and Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402 [33] Li B Y, Xie X J, Duan G X, Chen S H, Meng X Y and Zhou R H 2020 Nanoscale 12 9430 [34] Muraru S, Samoila C G, Slusanschi E I, Burns J S and Ionita M 2020 Coatings 10 289 [35] PaciléD, Meyer J C, Rodríguez A F, Papagno M, Gómez-Navarro C, Sundaram R S, Burghard M , Kern K and Kaiser U 2011 Carbon 49 966 [36] Gomez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U 2010 Nano Lett. 10 1144 [37] Erickson K, Erni R, Lee Z, Alem N, Gannett W and Zettl A 2010 Adv. Mater. 22 4467 [38] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M and Ruoff R D 2008 Science 321 1815 [39] Xu Z, Lei X L, Tu Y S, Tan Z J, Song B and Fang H P 2017 Chem. Eur. J. 23 13100 [40] Ma H S, Chen J G, Fang H P and Lei X L 2021 Chin. Phys. B 30 106806 [41] Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. 126 10354 [42] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M Jr, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput Chem. 26 1668 [43] Hess B, Kutzner C, Spoel D V D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 [44] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950 [45] Bussi G, Zykova-Timan T and Parrinello M 2009 J. Chem. Phys. 130 074101 [46] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 [47] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 [48] Ma H S, Xu Z, Fang H P and Lei X L 2020 Phys. Chem. Chem. Phys. 22 11740 [49] Lei X L, Ma H S and Fang H P 2020 Nanoscale 12 6699 [50] Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477 [51] Zuo G H, Zhou X, Huang Q, Fang H P and Zhou R H 2011 J. Phys. Chem. C 115 23323 [52] Titov A V, Král P and Pearson R 2010 ACS Nano 4 229 [53] Patra N, Wang B Y and Král P 2009 Nano Lett. 9 3766 [54] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33 [55] Baumann C G, Smith S B, Bloomfield V A and Bustamante C 1997 Proc. Natl. Acad. Sci. USA 94 6185 [56] Vafabakhsh R and Ha T 2012 Science 337 1097 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|