Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018701    DOI: 10.1088/1674-1056/ac5c3a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions

Mengjiao Wu(吴梦娇)1,2, Huishu Ma(马慧姝)3, Haiping Fang(方海平)4, Li Yang(阳丽)1,†, and Xiaoling Lei(雷晓玲)4,‡
1 College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Changzhou Vocational Institute of Mechatronic Technology, Professional Basic Department, Changzhou 213164, China;
4 School of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  The adsorption dynamics of double-stranded DNA (dsDNA) molecules on a graphene oxide (GO) surface are important for applications of DNA/GO functional structures in biosensors, biomedicine and materials science. In this work, molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules (from 4 bp to 24 bp) on the GO surface. The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface. For short dsDNA (4 bp) molecules, the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface. For long dsDNA molecules (from 8 bp to 24 bp) adsorption is stable. By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface, we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp. We attributed this behavior to the flexibility of dsDNA molecules. With increasing length, the flexibility of dsDNA molecules also increases, and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal. This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.
Keywords:  double-strand DNA (dsDNA)      molecular dynamics simulation      adsorption dynamic      graphene oxide  
Received:  07 January 2022      Revised:  26 February 2022      Accepted manuscript online:  10 March 2022
PACS:  87.14.gk (DNA)  
  68.47.Gh (Oxide surfaces)  
  87.10.Tf (Molecular dynamics simulation)  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974366), the Fundamental Research Funds for the Central Universities, China, the Supercomputer Center of the Chinese Academy of Sciences, and the Shanghai Supercomputer Center of China.
Corresponding Authors:  Li Yang, Xiaoling Lei     E-mail:  yangli@mailbox.gxnu.edu.cn;leixiaoling@ecust.edu.cn

Cite this article: 

Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲) Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions 2023 Chin. Phys. B 32 018701

[1] Watson J D and Crick F H 1953 Cold Spring Harb. Symp. Quant. Biol. 18 123
[2] Saeed A A, Sanchez J L A, O'Sullivan C K and Abbas M N 2017 Bioelectrochemistry 118 91
[3] Li F, Zhang H, Dever B, Li X F and Le X C 2013 Bioconjug. Chem. 24 1790
[4] Hu Y F, Huang Z C, Liu B W and Liu J W 2021 ACS Appl. Nano Mater. 4 1377
[5] Epanchintseva A V, Gorbunova E A, Ryabchikova E I, Pyshnaya I A and Pyshnyi D V 2021 Nanomaterials 11 1178
[6] Banerjee A, Pons T, Lequeux N and Dubertret B 2016 Interface Focus 6 20160064
[7] Lv J Z, Liu S Y and Miao Y M 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 248 119254
[8] Hu O, Li Z Y, Tong Y L, Wang Q Y and Chen Z G 2021 Talanta 235 122763
[9] Liu B W, Salgado S, Maheshwari V and Liu J W 2016 Curr. Opin. Colloid Interface Sci. 26 41
[10] Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. 121 4879
[11] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P and Fan C H 2010 Adv. Funct. Mater. 20 453
[12] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y H 2010 Electroanalysis 22 1027
[13] Mukherjee S, Richtera L, Ashrafi A M, Adam V and Richtera L 2020 Processes 8 1636
[14] Cui L, Song Y L, Ke G L, Guan Z C, Zhang H M, Lin Y, Huang Y S, Zhu Z and Yang C J 2013 Chemistry 19 10442
[15] Qi L, Pan T H, Ou L L, Ye Z Q, Yu C L, Bao B J, Wu Z X, Cao D Y and Dai L M 2021 Commun. Biol. 4 214
[16] Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare E N, Padil V V T, Zarrabi A, Pourreza N, Miltyk W and Maiti T K 2020 Carbohydr. Polym. 250 116952
[17] Barot T, Rawtani D and Kulkarni P 2021 Rev. Adv. Mater. Sci. 60 173
[18] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[19] Tang L H, Chang H X, Liu Y and Li J H 2012 Adv. Funct. Mater. 22 3083
[20] Huang P J and Liu J W 2012 Anal. Chem. 84 4192
[21] Shahriari S, Sastry M, Panjikar S and Raman S R K 2021 Nanotechnol. Sci. Appl. 14 197
[22] Moshari M, Koirala D and Allen P B 2021 J. Solid State Electr. 25 1667
[23] Park J S, Goo N I and Kim D E 2014 Langmuir 30 12587
[24] Jin L L, Yang K, Yao K, Zhang S, Tao H Q, Lee S T, Liu Z and Peng R 2012 ACS Nano. 6 4864
[25] Patil A J, Vickery J L, Scott T B and Mann S 2009 Adv. Mater. 21 3159
[26] Lei H Z, Mi L J, Zhou X J, Chen J J, Hu J, Guo S W and Zhang Y 2011 Nanoscale 3 3888
[27] Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C N R 2009 Chem. Phys. Chem. 10 206
[28] Song B, Cuniberti G, Sanvito S and Fang H P 2012 Appl. Phys. Lett. 100 063101
[29] Kim S, Park C and Gang J 2015 J. Nanosci. Nanotechnol. 15 7913
[30] Zhao X C 2011 J. Phys. Chem. C 115 6181
[31] Kabelac M, Kroutil O, Predota M, Lankas F and Sip M 2012 Phys. Chem. Chem. Phys. 14 4217
[32] Zeng S W, Chen L, Wang Y and Chen J L 2015 J. Phys. D: Appl. Phys. 48 275402
[33] Li B Y, Xie X J, Duan G X, Chen S H, Meng X Y and Zhou R H 2020 Nanoscale 12 9430
[34] Muraru S, Samoila C G, Slusanschi E I, Burns J S and Ionita M 2020 Coatings 10 289
[35] PaciléD, Meyer J C, Rodríguez A F, Papagno M, Gómez-Navarro C, Sundaram R S, Burghard M , Kern K and Kaiser U 2011 Carbon 49 966
[36] Gomez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U 2010 Nano Lett. 10 1144
[37] Erickson K, Erni R, Lee Z, Alem N, Gannett W and Zettl A 2010 Adv. Mater. 22 4467
[38] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M and Ruoff R D 2008 Science 321 1815
[39] Xu Z, Lei X L, Tu Y S, Tan Z J, Song B and Fang H P 2017 Chem. Eur. J. 23 13100
[40] Ma H S, Chen J G, Fang H P and Lei X L 2021 Chin. Phys. B 30 106806
[41] Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. 126 10354
[42] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M Jr, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput Chem. 26 1668
[43] Hess B, Kutzner C, Spoel D V D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[44] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950
[45] Bussi G, Zykova-Timan T and Parrinello M 2009 J. Chem. Phys. 130 074101
[46] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[47] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[48] Ma H S, Xu Z, Fang H P and Lei X L 2020 Phys. Chem. Chem. Phys. 22 11740
[49] Lei X L, Ma H S and Fang H P 2020 Nanoscale 12 6699
[50] Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477
[51] Zuo G H, Zhou X, Huang Q, Fang H P and Zhou R H 2011 J. Phys. Chem. C 115 23323
[52] Titov A V, Král P and Pearson R 2010 ACS Nano 4 229
[53] Patra N, Wang B Y and Král P 2009 Nano Lett. 9 3766
[54] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[55] Baumann C G, Smith S B, Bloomfield V A and Bustamante C 1997 Proc. Natl. Acad. Sci. USA 94 6185
[56] Vafabakhsh R and Ha T 2012 Science 337 1097
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[4] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!