Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108701    DOI: 10.1088/1674-1056/acdfc1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule

Yi-Zhao Geng(耿轶钊)1,2,†, Li-Ai Lu(鲁丽爱)1,2, Ning Jia(贾宁)1,2, Bing-Bing Zhang(张冰冰)1,2, and Qing Ji(纪青)1,2,‡
1 School of Science, Hebei University of Technology, Tianjin 300401, China;
2 Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
Abstract  Microtubule catalyzes the mechanochemical cycle of kinesin, a kind of molecular motor, through its crucial roles in kinesin's gating, ATPase and force-generation process. These functions of microtubule are realized through the kinesin-microtubule interaction. The binding site of kinesin on the microtubule surface is fixed. For most of the kinesin-family members, the binding site on microtubule is in the groove between $\alpha $-tubulin and $\beta $-tubulin in a protofilament. The mechanism of kinesin searching for the appropriate binding site on microtubule is still unclear. Using the molecular dynamics simulation method, we investigate the interactions between kinesin-1 and the different binding positions on microtubule. The key non-bonded interactions between the motor domain and tubulins in kinesin's different nucleotide-binding states are listed. The differences of the amino-acid sequences between $\alpha$- and $\beta$-tubulins make kinesin-1 binding to the $\alpha$-$\beta$ groove much more favorable than to the $\beta$-$\alpha$ groove. From these results, a two-step mechanism of kinesin-1 to discriminate the correct binding site on microtubule is proposed. Most of the kinesin-family members have the conserved motor domain and bind to the same site on microtubule, the mechanism may also be shared by other family members of kinesin.
Keywords:  kinesin      tubulin      microtubule      molecular dynamics simulation  
Received:  02 April 2023      Revised:  14 May 2023      Accepted manuscript online:  20 June 2023
PACS:  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
  87.16.Ka (Filaments, microtubules, their networks, and supramolecular assemblies)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: This work was supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2020202007) and the National Natural Science Foundation of China (Grant No. 11605038).
Corresponding Authors:  Yi-Zhao Geng, Qing Ji     E-mail:  gengyz@hebut.edu.cn;jiqingch@hebut.edu.cn

Cite this article: 

Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青) Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule 2023 Chin. Phys. B 32 108701

[1] Hirokawa N and Noda Y 2008 Physiol. Rev. 88 1089
[2] Hirokawa N and Tanaka Y 2015 Exp. Cell. Res. 334 16
[3] Cason S E and Holzbaur E L F 2022 Nat. Rev. Mol. Cell Biol. 23 699
[4] Brady S T 1985 Nature 317 73
[5] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39
[6] Vale R D and Milligan R A 2000 Science 288 88
[7] Vale R D 2003 Cell 112 467
[8] Kaseda K, Higuchi H and Hirose K 2003 Nat. Cell Biol. 5 1079
[9] Asbury C L, Fehr A N and Block S M 2003 Science 302 2130
[10] Yildiz A, Tomishige M, Vale R D and Selvin P R 2004 Science 303 676
[11] Toprak E, Yildiz A, Hoffman M T, Rosenfeld S S and Selvin P R 2009 Proc. Natl. Acad. Sci. USA 106 12717
[12] Qin J Y, Zhang H, Geng Y Z and Ji Q 2020 Int. J. Mol. Sci. 21 6977
[13] Hua W, Young E C, Fleming M L and Gelles J 1997 Nature 388 390
[14] Schnitzer M J and Block S M 1997 Nature 388 386
[15] Coy D L, Wagenbach M and Howard J 1999 J. Biol. Chem. 274 3667
[16] Hancock W O 2016 Biophys. J. 110 1216
[17] Guo S K and Xie P 2020 Biophys. Chem. 264 106427
[18] Crevel I M, Lockhart A and Cross R A 1996 J. Mol. Biol. 257 66
[19] Crevel I M, Nyitrai M, Alonso M C, Weiss S, Geeves M A and Cross R A 2004 EMBO J. 23 23
[20] Sosa H, Peterman E J, Moerner W E and Goldstein L S 2001 Nat. Struct. Mol. Biol. 8 540
[21] Asenjo A B, Krohn N and Sosa H 2003 Nat. Struct. Mol. Biol. 10 836
[22] Asenjo A B and Sosa H 2009 Proc. Natl. Acad. Sci. USA 106 5657
[23] Hackney D D 1988 Proc. Natl. Acad. Sci. USA 85 6314
[24] Reubold T F, Eschenburg S, Becker A, Kull F J and Manstein D J 2003 Nat. Struct. Mol. Biol. 10 826
[25] Sindelar C V 2011 Biophys. Rev. 3 85
[26] Kikkawa M, Sablin E P, Okada Y, Yajima H, Fletterick R J and Hirokawa N 2001 Nature 411 439
[27] Skiniotis G, Cochran J C, Müller J, Mandelkow E, Gilbert S P and Hoenger A 2004 EMBO J. 23 989
[28] Ma Y L, Li T, Jin Y M, Geng Y Z and Ji Q 2019 Cell Mol. Bioeng. 12 345
[29] Rosenfeld S, Xing J, Jefferson G M, Cheung H C and King P H 2002 J. Biol. Chem. 277 36731
[30] Rosenfeld S S, Fordyce P M, Jefferson G M, King P H and Block S M 2003 J. Biol. Chem. 278 18550
[31] Uemura S and Ishiwata S 2003 Nat. Struct. Mol. Biol. 10 308
[32] Block S M 2007 Biophys. J. 92 2986
[33] Song Y H and Mandelkow E 1993 Proc. Natl. Acad. Sci. USA 90 1671
[34] Harrison B C, Marchese-Ragona S P, Gilbert S P, Cheng N, Steven A C and Johnson K A 1993 Nature 362 73
[35] Hoenger A, Sablin E P, Vale R D, Fletterick R J and Milligan R A 1995 Nature 367 271
[36] Kikkawa M, Ishikawa T, Wakabayashi T and Hirokawa N 1995 Nature 376 274
[37] Hirose K, Lockhart A, Cross R A and Amos L A 1995 Nature 376 277
[38] Marx A, Müller J, Mandelkow E-M, Hoenger A and Mandelkow E M 2006 J. Muscl. Res. Cell Motility 27 125
[39] Klumpp L M, Brendza K M, Rosenberg J M, Hoenger A and Gilbert S P 2003 Biochemistry 42 2595
[40] Klumpp L M, Mackey A T, Farrell C M, Rosenberg J M and Gilbert S P 2003 J. Biol. Chem. 278 39059
[41] Klumpp L M, Brendza K M, Gatial J E, Hoenger A, Saxton W M and Gilbert S P 2004 Biochemistry 43 2792
[42] Klumpp L M, Hoenger A and Gilbert S P 2004 Proc. Natl. Acad. Sci. USA 101 3444
[43] Sindelar C V and Downing K H 2007 J. Cell Biol. 177 377
[44] Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111
[45] Shang Z G, Zhou K F, Xu C, Csencsits R, Cochran J C and Sindelar C V 2014 eLife 3 e04686
[46] Aprodu I, Soncini M and Redaelli A 2008 J. Biomech. 41 3196
[47] Grant B J, Gheorghe D M, Zheng W J, Alonso M, Huber G, Dlugosz M, McCammon J A and Cross R A 2011 PLoS Biol. 9 e1001207
[48] Woehlke G, Ruby A K, Hart C L, Ly B, Hom-Booher N and Vale R D 1997 Cell 90 207
[49] Li M H and Zheng W J 2011 Biochemistry 50 8645
[50] Li M H and Zheng W J 2012 Biochemistry 51 5022
[51] Cao L Y, Wang W Y, Jiang Q Y, Wang C G, Knossow M and Gigant B 2014 Nat. Commun. 5 5346
[52] Gigant B, Wang W Y, Dreier B, Jiang Q Y, Pecqueur L, Plückthun A, Wang C and Knossow M 2013 Nat. Struct. Mol. Biol. 20 1001
[53] Nitta R, Okada Y and Hirokawa N 2008 Nat. Struct. Mol. Biol. 15 1067
[54] Kull F J, Sablin E P, Lau R, Fletterick R J and Vale R D 1996 Nature 380 550
[55] Alushin G M, Lander G C, Kellogg E H, Zhang R, Baker D and Nogales E 2014 Cell 157 1117
[56] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[57] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[58] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
[59] MacKerell A D, Bashford D, Bellott M, et al. 1998 J. Phys. Chem. B 102 3586
[60] Best R B, Zhu X, Shim J, Lopes P E M, Mittal J, Feig M and MacKerell A D 2012 J. Chem. Theory Comput. 8 3257
[61] MacKerell A D, Feig M and Brooks C L 2004 J. Am. Chem. Soc. 126 698
[62] Pavelites J J, Gao J, Bash P A and MacKerell A D 1997 J. Comput. Chem. 18 221
[63] Bai Q, Tan S, Xu T, Liu H, Huang J and Yao X 2021 Brief. Bioinform. 22 1
[64] Shi X X, Wang P Y, Chen H and Xie P 2021 Int. J. Mol. Sci. 22 6709
[65] Roll-Mecak A 2015 Semin. Cell Dev. Biol. 37 11
[66] Okada Y and Hirokawa N 2000 Proc. Natl. Acad. Sci. USA 97 640
[67] Natarajan K, Gadadhar S, Souphron J, Magiera M M and Janke C 2017 EMBO Rep. 18 1013
[68] Bigman L S and Levy Y 2020 Proc. Natl. Acad. Sci. USA 117 8876
[69] MacTaggart B and Kashina A 2021 Cytoskeleton 78 142
[70] Sirajuddin M, Rice L M and Vale R D 2014 Nat. Cell Biol. 16 335
[71] Priel A, Tuszynski J A and Woolf N J 2005 Eur. Biophys. J. Biophy. 35 40
[72] Tuszyński J A, Brown J A, Crawford E and Carpenter E J 2005 Math. Comput. Model. 41 1055
[73] Wall K P, Pagratis M, Armstrong G, Balsbaugh J L, Verbeke E, Pearson C G and Hough L E 2016 ACS Chem. Biol. 11 2981
[1] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[2] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[3] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[4] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network
Sedric Ndoungalah, Guy Roger Deffo, Arnaud Djine, and Serge Bruno Yamgoué. Chin. Phys. B, 2023, 32(11): 110505.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[15] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
No Suggested Reading articles found!