INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule |
Yi-Zhao Geng(耿轶钊)1,2,†, Li-Ai Lu(鲁丽爱)1,2, Ning Jia(贾宁)1,2, Bing-Bing Zhang(张冰冰)1,2, and Qing Ji(纪青)1,2,‡ |
1 School of Science, Hebei University of Technology, Tianjin 300401, China; 2 Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract Microtubule catalyzes the mechanochemical cycle of kinesin, a kind of molecular motor, through its crucial roles in kinesin's gating, ATPase and force-generation process. These functions of microtubule are realized through the kinesin-microtubule interaction. The binding site of kinesin on the microtubule surface is fixed. For most of the kinesin-family members, the binding site on microtubule is in the groove between $\alpha $-tubulin and $\beta $-tubulin in a protofilament. The mechanism of kinesin searching for the appropriate binding site on microtubule is still unclear. Using the molecular dynamics simulation method, we investigate the interactions between kinesin-1 and the different binding positions on microtubule. The key non-bonded interactions between the motor domain and tubulins in kinesin's different nucleotide-binding states are listed. The differences of the amino-acid sequences between $\alpha$- and $\beta$-tubulins make kinesin-1 binding to the $\alpha$-$\beta$ groove much more favorable than to the $\beta$-$\alpha$ groove. From these results, a two-step mechanism of kinesin-1 to discriminate the correct binding site on microtubule is proposed. Most of the kinesin-family members have the conserved motor domain and bind to the same site on microtubule, the mechanism may also be shared by other family members of kinesin.
|
Received: 02 April 2023
Revised: 14 May 2023
Accepted manuscript online: 20 June 2023
|
PACS:
|
87.16.Nn
|
(Motor proteins (myosin, kinesin dynein))
|
|
87.16.Ka
|
(Filaments, microtubules, their networks, and supramolecular assemblies)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
Fund: This work was supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2020202007) and the National Natural Science Foundation of China (Grant No. 11605038). |
Corresponding Authors:
Yi-Zhao Geng, Qing Ji
E-mail: gengyz@hebut.edu.cn;jiqingch@hebut.edu.cn
|
Cite this article:
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青) Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule 2023 Chin. Phys. B 32 108701
|
[1] Hirokawa N and Noda Y 2008 Physiol. Rev. 88 1089 [2] Hirokawa N and Tanaka Y 2015 Exp. Cell. Res. 334 16 [3] Cason S E and Holzbaur E L F 2022 Nat. Rev. Mol. Cell Biol. 23 699 [4] Brady S T 1985 Nature 317 73 [5] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39 [6] Vale R D and Milligan R A 2000 Science 288 88 [7] Vale R D 2003 Cell 112 467 [8] Kaseda K, Higuchi H and Hirose K 2003 Nat. Cell Biol. 5 1079 [9] Asbury C L, Fehr A N and Block S M 2003 Science 302 2130 [10] Yildiz A, Tomishige M, Vale R D and Selvin P R 2004 Science 303 676 [11] Toprak E, Yildiz A, Hoffman M T, Rosenfeld S S and Selvin P R 2009 Proc. Natl. Acad. Sci. USA 106 12717 [12] Qin J Y, Zhang H, Geng Y Z and Ji Q 2020 Int. J. Mol. Sci. 21 6977 [13] Hua W, Young E C, Fleming M L and Gelles J 1997 Nature 388 390 [14] Schnitzer M J and Block S M 1997 Nature 388 386 [15] Coy D L, Wagenbach M and Howard J 1999 J. Biol. Chem. 274 3667 [16] Hancock W O 2016 Biophys. J. 110 1216 [17] Guo S K and Xie P 2020 Biophys. Chem. 264 106427 [18] Crevel I M, Lockhart A and Cross R A 1996 J. Mol. Biol. 257 66 [19] Crevel I M, Nyitrai M, Alonso M C, Weiss S, Geeves M A and Cross R A 2004 EMBO J. 23 23 [20] Sosa H, Peterman E J, Moerner W E and Goldstein L S 2001 Nat. Struct. Mol. Biol. 8 540 [21] Asenjo A B, Krohn N and Sosa H 2003 Nat. Struct. Mol. Biol. 10 836 [22] Asenjo A B and Sosa H 2009 Proc. Natl. Acad. Sci. USA 106 5657 [23] Hackney D D 1988 Proc. Natl. Acad. Sci. USA 85 6314 [24] Reubold T F, Eschenburg S, Becker A, Kull F J and Manstein D J 2003 Nat. Struct. Mol. Biol. 10 826 [25] Sindelar C V 2011 Biophys. Rev. 3 85 [26] Kikkawa M, Sablin E P, Okada Y, Yajima H, Fletterick R J and Hirokawa N 2001 Nature 411 439 [27] Skiniotis G, Cochran J C, Müller J, Mandelkow E, Gilbert S P and Hoenger A 2004 EMBO J. 23 989 [28] Ma Y L, Li T, Jin Y M, Geng Y Z and Ji Q 2019 Cell Mol. Bioeng. 12 345 [29] Rosenfeld S, Xing J, Jefferson G M, Cheung H C and King P H 2002 J. Biol. Chem. 277 36731 [30] Rosenfeld S S, Fordyce P M, Jefferson G M, King P H and Block S M 2003 J. Biol. Chem. 278 18550 [31] Uemura S and Ishiwata S 2003 Nat. Struct. Mol. Biol. 10 308 [32] Block S M 2007 Biophys. J. 92 2986 [33] Song Y H and Mandelkow E 1993 Proc. Natl. Acad. Sci. USA 90 1671 [34] Harrison B C, Marchese-Ragona S P, Gilbert S P, Cheng N, Steven A C and Johnson K A 1993 Nature 362 73 [35] Hoenger A, Sablin E P, Vale R D, Fletterick R J and Milligan R A 1995 Nature 367 271 [36] Kikkawa M, Ishikawa T, Wakabayashi T and Hirokawa N 1995 Nature 376 274 [37] Hirose K, Lockhart A, Cross R A and Amos L A 1995 Nature 376 277 [38] Marx A, Müller J, Mandelkow E-M, Hoenger A and Mandelkow E M 2006 J. Muscl. Res. Cell Motility 27 125 [39] Klumpp L M, Brendza K M, Rosenberg J M, Hoenger A and Gilbert S P 2003 Biochemistry 42 2595 [40] Klumpp L M, Mackey A T, Farrell C M, Rosenberg J M and Gilbert S P 2003 J. Biol. Chem. 278 39059 [41] Klumpp L M, Brendza K M, Gatial J E, Hoenger A, Saxton W M and Gilbert S P 2004 Biochemistry 43 2792 [42] Klumpp L M, Hoenger A and Gilbert S P 2004 Proc. Natl. Acad. Sci. USA 101 3444 [43] Sindelar C V and Downing K H 2007 J. Cell Biol. 177 377 [44] Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111 [45] Shang Z G, Zhou K F, Xu C, Csencsits R, Cochran J C and Sindelar C V 2014 eLife 3 e04686 [46] Aprodu I, Soncini M and Redaelli A 2008 J. Biomech. 41 3196 [47] Grant B J, Gheorghe D M, Zheng W J, Alonso M, Huber G, Dlugosz M, McCammon J A and Cross R A 2011 PLoS Biol. 9 e1001207 [48] Woehlke G, Ruby A K, Hart C L, Ly B, Hom-Booher N and Vale R D 1997 Cell 90 207 [49] Li M H and Zheng W J 2011 Biochemistry 50 8645 [50] Li M H and Zheng W J 2012 Biochemistry 51 5022 [51] Cao L Y, Wang W Y, Jiang Q Y, Wang C G, Knossow M and Gigant B 2014 Nat. Commun. 5 5346 [52] Gigant B, Wang W Y, Dreier B, Jiang Q Y, Pecqueur L, Plückthun A, Wang C and Knossow M 2013 Nat. Struct. Mol. Biol. 20 1001 [53] Nitta R, Okada Y and Hirokawa N 2008 Nat. Struct. Mol. Biol. 15 1067 [54] Kull F J, Sablin E P, Lau R, Fletterick R J and Vale R D 1996 Nature 380 550 [55] Alushin G M, Lander G C, Kellogg E H, Zhang R, Baker D and Nogales E 2014 Cell 157 1117 [56] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 [57] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33 [58] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781 [59] MacKerell A D, Bashford D, Bellott M, et al. 1998 J. Phys. Chem. B 102 3586 [60] Best R B, Zhu X, Shim J, Lopes P E M, Mittal J, Feig M and MacKerell A D 2012 J. Chem. Theory Comput. 8 3257 [61] MacKerell A D, Feig M and Brooks C L 2004 J. Am. Chem. Soc. 126 698 [62] Pavelites J J, Gao J, Bash P A and MacKerell A D 1997 J. Comput. Chem. 18 221 [63] Bai Q, Tan S, Xu T, Liu H, Huang J and Yao X 2021 Brief. Bioinform. 22 1 [64] Shi X X, Wang P Y, Chen H and Xie P 2021 Int. J. Mol. Sci. 22 6709 [65] Roll-Mecak A 2015 Semin. Cell Dev. Biol. 37 11 [66] Okada Y and Hirokawa N 2000 Proc. Natl. Acad. Sci. USA 97 640 [67] Natarajan K, Gadadhar S, Souphron J, Magiera M M and Janke C 2017 EMBO Rep. 18 1013 [68] Bigman L S and Levy Y 2020 Proc. Natl. Acad. Sci. USA 117 8876 [69] MacTaggart B and Kashina A 2021 Cytoskeleton 78 142 [70] Sirajuddin M, Rice L M and Vale R D 2014 Nat. Cell Biol. 16 335 [71] Priel A, Tuszynski J A and Woolf N J 2005 Eur. Biophys. J. Biophy. 35 40 [72] Tuszyński J A, Brown J A, Crawford E and Carpenter E J 2005 Math. Comput. Model. 41 1055 [73] Wall K P, Pagratis M, Armstrong G, Balsbaugh J L, Verbeke E, Pearson C G and Hough L E 2016 ACS Chem. Biol. 11 2981 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|