Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066502    DOI: 10.1088/1674-1056/acbf26
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms

Ying Tang(唐莹)1, Junkun Liu(刘俊坤)1, Zihao Yu(于子皓)2, Ligang Sun(孙李刚)3,†, and Linli Zhu(朱林利)1,2,‡
1 College of Optics and Electronics Technology, China Jiliang University, Hangzhou 310018, China;
2 Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
3 School of Science, Harbin Institute of Technology, Shenzhen 518055, China
Abstract  The thermal conductivity of GaN nanofilm is simulated by using the molecular dynamics (MD) method to explore the influence of the nanofilm thickness and the pre-strain field under different temperatures. It is demonstrated that the thermal conductivity of GaN nanofilm increases with the increase of nanofilm thickness, while decreases with the increase of temperature. Meanwhile, the thermal conductivity of strained GaN nanofilms is weakened with increasing the tensile strain. The film thickness and environment temperature can affect the strain effect on the thermal conductivity of GaN nanofilms. In addition, the analysis of phonon properties of GaN nanofilm shows that the phonon dispersion and density of states of GaN nanofilms can be significantly modified by the film thickness and strain. The results in this work can provide the theoretical supports for regulating the thermal properties of GaN nanofilm through tailoring the geometric size and strain engineering.
Keywords:  molecular dynamics simulation      GaN nanofilm      thermal conductivity      phonon properties      size effect      strain effect  
Received:  28 November 2022      Revised:  24 February 2023      Accepted manuscript online:  27 February 2023
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772294 and 11621062) and the Fundamental Research Funds for the Central Universities (Grant No. 2017QNA4031).
Corresponding Authors:  Ligang Sun, Linli Zhu     E-mail:  sunligang@hit.edu.cn;llzhu@zju.edu.cn

Cite this article: 

Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利) Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms 2023 Chin. Phys. B 32 066502

[1] Wang J H, Mulligan P, Brillson L and Cao L R2015 Appl. Phys. Rev. 2 031102
[2] Liu W, Yuan S W and Fan X Y2021 Phys. Lett. A 408 127471
[3] Toprak A, Yılmaz D and Özbay E2022 Semicond. Sci. Tech. 37 125005
[4] Joshin K, Kikkawa T, Masuda S and Watanabe K 2014 Fujitsu Sci. Tech. J. 50 138
[5] Muhammad Z, Zhang Y, Vallobra P, Peng S, Yu S, Lv Z, Cheng H and Zhao W2022 Adv. Mater. Tech. 8 2200539
[6] Marino F A, Faralli N, Ferry D K, Goodnick S M and Saraniti M2009 J. Phys. Conf. Ser. 193 012040
[7] Sang L2022 Funct. Diamond 1 174
[8] Tang J J, Liu G P, Mao B Y, Ali S, Zhao G J and Yang J H2021 Phys. Lett. A 410 127527
[9] Jia L, Fan Z, Wei Y and Yang F 2012 Micronanoelectron. Technol. 49 716
[10] Goyal V, Sumant A V, Tweedbank D and Balandin A A2012 Adv. Funct. Mater. 22 1525
[11] Luo C Y, Marchand H, Clarke D R, et al.1999 Appl. Phys. Lett. 75 4151
[12] Beechem T E, McDonald A E, Fuller E J, et al.2016 J. Appl. Phys. 120 095104
[13] Ziade E, Yang J, Brummer G, et al.2017 Appl. Phy. Lett. 110 031903
[14] Jeżowski A, Danilchenko B A, Boćkowski M, Grzegory I, Krukowski S, Suski T and Paszkiewicz T2003 Solid State Commun. 128 69
[15] Kawamura T, Kangawa Y and Kakimoto K2005 J. Cryst. Growth 284 197
[16] Zou J, Kotchetkov D, Balandin A A, et al.2002 J. Appl. Phys. 92 2534
[17] Jung K, Cho M and Zhou M2011 Appl. Phys. Lett. 98 041909
[18] Zhu L, Tang X, Wang J and Hou Y2019 AIP Adv. 9 015024
[19] Pearton S J, Ren F, Wang Y L, et al.2010 Prog. Mater. Sci. 55 1
[20] Chen K J, Häberlen O, Lidow A, Tsai C, Ueda T, Uemoto Y and Wu Y2017 IEEE Trans. Electron Devices 64 779
[21] Öztürk M K, Altuntaş H, Çörekçi S, Hongbo Y, Özçelik S and Özbay E2011 Strain 47 19
[22] Tomas H, Oostenbrink C and Gunsteren W2002 Curr. Opin. Struct. Bio. 12 190
[23] Thompson A P, Metin A H, Berger R, et al.2022 Comput. Phys. Commun. 271 108171
[24] Stillinger F H and Weber T A1985 Phys. Rev. B 31 5262
[25] Liang Z, Jain A, McGaughey A J H and Keblinski P2015 J. Appl. Phys. 118 125104
[26] Ruelle D2012 Commun. Math. Phys. 311 755
[27] Wang J and Zhang L2009 Phys. Rev. B 80 012301
[28] Surblys D, Matsubara H, Kikugawa G, et al.2021 J. Appl. Phys. 130 215104
[29] Kong L2011 Comput. Phys. Commun. 182 2201
[30] Nipko J C and Loong C K1998 Appl. Phys. Lett. 73 34
[31] Bungaro C, Rapcewicz K and Bernholc J2000 Phys. Rev. B 61 6720
[32] Azuhata T, Matsunaga T, Shimada K, Yoshida K, Sota T, Suzuki K and Nakamura K1996 Physica B 219-220 493
[33] Mahboubeh Y and Fakhrabad D V2021 Superl. Microstrt. 156 106984
[34] Holland M G1963 Phys. Rev. 132 2461
[35] Dong L, Wu X, Hu Y, Xu X and Bao H2021 Chin. Phys. Lett. 38 027202
[36] Yang Y Y, Gong P, Ma W D, Hao R and Fang X Y2021 Chin. Phys. B 30 067803
[37] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H and Cao M S2021 Physica E 128 114578
[38] Zhu G, Zhao C, Wang X and Wang J2021 Chin. Phys. Lett. 38 024401
[39] Jiang J2015 Nanotechnology 26 055701
[1] Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study
Xiang Ji(姬祥) and Junqian Zhang(张俊乾). Chin. Phys. B, 2023, 32(6): 066601.
[2] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[3] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[4] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[5] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[6] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[7] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[8] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[9] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[10] Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures
Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽). Chin. Phys. B, 2023, 32(5): 056701.
[11] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[12] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[13] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[14] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[15] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
No Suggested Reading articles found!