CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy |
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏)† |
Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract The tension and compression of face-centered-cubic high-entropy alloy (HEA) nanowires are significantly asymmetric, but the tension--compression asymmetry in nanoscale body-centered-cubic (BCC) HEAs is still unclear. In this study, the tension--compression asymmetry of the BCC AlCrFeCoNi HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire. The tension--compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension--compression asymmetry on the cross-sectional edge length, crystallographic orientation, and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension--compression asymmetry of the BCC HEA nanowires.
|
Received: 15 July 2023
Revised: 20 September 2023
Accepted manuscript online: 22 September 2023
|
PACS:
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
62.23.Hj
|
(Nanowires)
|
|
61.66.Dk
|
(Alloys )
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12272118) and the National Key Research and Development Program of China (Grant No. 2022YFE03030003). |
Corresponding Authors:
Xuepeng Liu
E-mail: liuxuepeng@hfut.edu.cn
|
Cite this article:
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏) Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy 2024 Chin. Phys. B 33 016202
|
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299 [2] Cao G, Liang J, Guo Z, Yang K, Wang G, Wang H L, Wan X, Li Z, Bai Y, Zhang Y, Liu J, Feng Y, Zheng Z, Lu, He G, Xiong Z, Liu Z, Chen S, Guo Y, Zeng M, Lin J and Fu L 2023 Nature 619 73 [3] Liu Y, Ren J, Guan S, Li C, Zhang Y, Muskeri S, Liu Z, Yu D, Chen Y, An K, Cao Y, Liu W, Zhu Y, Chen W, Mukherjee S, Zhu T and Chen W 2023 Acta Mater. 250 118884 [4] Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107 [5] George E P, Raabe D and Ritchie R O 2019 Nat. Rev. Mater. 4 515 [6] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G and Lu Z 2018 Nature 563 546 [7] Chen S, Aitken Z H, Pattamatta S, Wu Z, Yu Z G, Srolovitz D J, Liaw P K and Zhang Y W 2021 Nat. Commun. 12 4953 [8] Karati A, Guruvidyathri K, Hariharan V S and Murty B S 2019 Scr. Mater. 162 465 [9] El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wróbel J S, Nguyen-Manh D, Maloy S A and Martinez E 2019 Sci. Adv. 5 eaav2002 [10] El-Atwani O, Vo H T, Tunes M A, Lee C, Alvarado A, Krienke N, Poplawsky J D, Kohnert A A, Gigax J, Chen W Y, Li M, Wang Y Q, Wróbel J S, Nguyen-Manh D, Baldwin J K S, Tukac O U, Aydogan E, Fensin S and Martinez E 2023 Nat. Commun. 14 2516 [11] Verma A, Tarate P, Abhyankar A C, Mohape M R, Gowtam D S, Deshmukh V P and Shanmugasundaram T 2019 Scr. Mater. 161 28 [12] Fu Y, Li J, Luo H, Du C and Li X 2021 J. Mater. Sci. Technol. 80 217 [13] Kao Y F, Chen S K, Sheu J H, Lin J T, Lin W E, Yeh J W, Lin S J, Liou T H and Wang C W 2010 Int. J. Hydrogen Energy 35 9046 [14] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1 [15] He C Y, Gao X H, Yu D M, Zhao S S, Guo H X and Liu G 2021 J. Mater. Chem. A 9 21270 [16] Postolnyi B, Buranich V, Smyrnova K, Araújo J P, Rebouta L, Pogrebnjak A and Rogoz V 2021 IOP Conf. Ser.:Mater. Sci. Eng. 1024 012009 [17] George E P, Curtin W A and Tasan C C 2020 Acta Mater. 188 435 [18] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777 [19] Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y, Wen M, Li J, Zhang Z, Zhu T, Ritchie R O and Yu Q 2019 Nature 574 223 [20] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science 345 1153 [21] Zhang Q, Huang R, Jiang J, Cao T, Zeng Y, Li J, Xue Y and Li X 2022 J. Mech. Phys. Solids 162 104853 [22] Zhang Q, Huang R, Zhang X, Cao T, Xue Y and Li X 2021 Nano Lett. 21 3671 [23] Zhao S, Li Z, Zhu C, Yang W, Zhang Z, Armstrong D E J, Grant P S, Ritchie R O and Meyers M A 2021 Sci. Adv. 7 eabb3108 [24] Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G and George E P 2013 Acta Mater. 61 5743 [25] Wang L, Qiao J W, Ma S G, Jiao Z M, Zhang T W, Chen G, Zhao D, Zhang Y and Wang Z H 2018 Mater. Sci. Eng. A 727 208 [26] Tang Y and Li D Y 2022 Sci. Adv. 8 eabp9096 [27] Yin S, Zuo Y, Abu-Odeh A, Zheng H, Li X G, Ding J, Ong S P, Asta M and Ritchie R O 2021 Nat. Commun. 12 4873 [28] Zheng T, Lv J, Wu Y, Wu H H, Liu S, Tang J, Zhou M, Wang H, Liu X, Jiang S and Lu Z 2021 Appl. Phys. Lett. 119 201907 [29] Gao T, Song H, Wang B, Gao Y, Liu Y, Xie Q, Chen Q, Xiao Q and Liang Y 2023 Int. J. Mech. Sci. 237 107800 [30] Shen T Z, Song H Y, An M R and Li Y L 2022 J. Appl. Phys. 131 094304 [31] Qi Y, He T and Feng M 2021 J. Appl. Phys. 129 195104 [32] Tian Y, Fang Q and Li J 2020 Nanotechnology 31 465701 [33] Xu Z, Li G, Zhou Y, Guo C, Huang Y, Hu X, Li X and Zhu Q 2023 J. Alloys Compd. 945 169313 [34] Zhang D, Liu X, Li T, Fu K, Peng Z and Zhu Y 2022 Comput. Mater. Sci. 208 111360 [35] Long J, Pan Q, Tao N and Lu L 2018 Mater. Res. Lett. 6 456 [36] Zhou K, Liu B, Shao S and Yao Y 2017 Phys. Lett. A 381 1163 [37] Tschopp M A and McDowell D L 2007 Appl. Phys. Lett. 90 121916 [38] Park H S, Gall K and Zimmerman J A 2006 J. Mech. Phys. Solids 54 1862 [39] Monk J and Farkas D 2007 Philos. Mag. 87 2233 [40] Lund A C, Nieh T G and Schuh C A 2004 Phys. Rev. B 69 012101 [41] Wang Y, Ding J, Fan Z, Tian L, Li M, Lu H, Zhang Y, Ma E, Li J and Shan Z 2021 Nat. Mater. 20 1371 [42] Burg J A and Dauskardt R H 2016 Nat. Mater. 15 974 [43] Liu X, Xu K, Ni Y, Lu P, Wang G and He L 2022 J. Appl. Phys. 132 075104 [44] Yin B B, Sun W K, Zhang Y and Liew K M 2023 Comput. Methods Appl. Mech. Eng. 403 115739 [45] Joseph J, Stanford N, Hodgson P and Fabijanic D M 2017 Scr. Mater. 129 30 [46] Niu Y, Zhao D, Zhu B, Wang S, Wang Z and Zhao H 2022 Nanotechnology 33 415703 [47] Niu Y, Zhao D, Zhu B, Wang S, Wang Z and Zhao H 2022 Nanotechnology 33 105705 [48] Zimmerman J A, Webb III E B, Hoyt J J, Jones R E, Klein P A and Bammann D J 2004 Modelling Simul. Mater. Sci. Eng. 12 S319 [49] Plimpton S 1995 J. Comput. Phys. 117 1 [50] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012 [51] Honeycutt J D and Anderson H C 1987 J. Phys. Chem. 91 4950 [52] Stukowski A, Bulatov V V and Arsenlis A 2012 Modelling Simul. Mater. Sci. Eng. 20 085007 [53] Fu Z, Jiang L, Waidini J L, MacDonlad B E, Wen H, Xiong W, Zhang D, Zhou Y, Rupert T J, Chen W and Lavermia E J 2018 Sci. Adv. 4 eaat8712 [54] Peng S, Wei Y and Gao H 2020 Proc. Natl. Acad. Sci. USA 117 5204 [55] Li X, Ono T, Wang Y and Esashi M 2003 Appl. Phys. Lett. 83 3081 [56] Wang J, Huang Q A and Yu H 2008 J. Phys. D:Appl. Phys. 41 165406 [57] Broughton J Q, Meli C A, Vashishta P and Kalia R K 1997 Phys. Rev. B 56 611 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|