Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016202    DOI: 10.1088/1674-1056/acfc37
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy

Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏)
Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
Abstract  The tension and compression of face-centered-cubic high-entropy alloy (HEA) nanowires are significantly asymmetric, but the tension--compression asymmetry in nanoscale body-centered-cubic (BCC) HEAs is still unclear. In this study, the tension--compression asymmetry of the BCC AlCrFeCoNi HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire. The tension--compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension--compression asymmetry on the cross-sectional edge length, crystallographic orientation, and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension--compression asymmetry of the BCC HEA nanowires.
Keywords:  high-entropy alloys      body-centered-cubic      nanowire      tension--compression asymmetry      atomistic simulations  
Received:  15 July 2023      Revised:  20 September 2023      Accepted manuscript online:  22 September 2023
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  62.23.Hj (Nanowires)  
  61.66.Dk (Alloys )  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12272118) and the National Key Research and Development Program of China (Grant No. 2022YFE03030003).
Corresponding Authors:  Xuepeng Liu     E-mail:  liuxuepeng@hfut.edu.cn

Cite this article: 

Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏) Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy 2024 Chin. Phys. B 33 016202

[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299
[2] Cao G, Liang J, Guo Z, Yang K, Wang G, Wang H L, Wan X, Li Z, Bai Y, Zhang Y, Liu J, Feng Y, Zheng Z, Lu, He G, Xiong Z, Liu Z, Chen S, Guo Y, Zeng M, Lin J and Fu L 2023 Nature 619 73
[3] Liu Y, Ren J, Guan S, Li C, Zhang Y, Muskeri S, Liu Z, Yu D, Chen Y, An K, Cao Y, Liu W, Zhu Y, Chen W, Mukherjee S, Zhu T and Chen W 2023 Acta Mater. 250 118884
[4] Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107
[5] George E P, Raabe D and Ritchie R O 2019 Nat. Rev. Mater. 4 515
[6] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G and Lu Z 2018 Nature 563 546
[7] Chen S, Aitken Z H, Pattamatta S, Wu Z, Yu Z G, Srolovitz D J, Liaw P K and Zhang Y W 2021 Nat. Commun. 12 4953
[8] Karati A, Guruvidyathri K, Hariharan V S and Murty B S 2019 Scr. Mater. 162 465
[9] El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wróbel J S, Nguyen-Manh D, Maloy S A and Martinez E 2019 Sci. Adv. 5 eaav2002
[10] El-Atwani O, Vo H T, Tunes M A, Lee C, Alvarado A, Krienke N, Poplawsky J D, Kohnert A A, Gigax J, Chen W Y, Li M, Wang Y Q, Wróbel J S, Nguyen-Manh D, Baldwin J K S, Tukac O U, Aydogan E, Fensin S and Martinez E 2023 Nat. Commun. 14 2516
[11] Verma A, Tarate P, Abhyankar A C, Mohape M R, Gowtam D S, Deshmukh V P and Shanmugasundaram T 2019 Scr. Mater. 161 28
[12] Fu Y, Li J, Luo H, Du C and Li X 2021 J. Mater. Sci. Technol. 80 217
[13] Kao Y F, Chen S K, Sheu J H, Lin J T, Lin W E, Yeh J W, Lin S J, Liou T H and Wang C W 2010 Int. J. Hydrogen Energy 35 9046
[14] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1
[15] He C Y, Gao X H, Yu D M, Zhao S S, Guo H X and Liu G 2021 J. Mater. Chem. A 9 21270
[16] Postolnyi B, Buranich V, Smyrnova K, Araújo J P, Rebouta L, Pogrebnjak A and Rogoz V 2021 IOP Conf. Ser.:Mater. Sci. Eng. 1024 012009
[17] George E P, Curtin W A and Tasan C C 2020 Acta Mater. 188 435
[18] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777
[19] Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y, Wen M, Li J, Zhang Z, Zhu T, Ritchie R O and Yu Q 2019 Nature 574 223
[20] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science 345 1153
[21] Zhang Q, Huang R, Jiang J, Cao T, Zeng Y, Li J, Xue Y and Li X 2022 J. Mech. Phys. Solids 162 104853
[22] Zhang Q, Huang R, Zhang X, Cao T, Xue Y and Li X 2021 Nano Lett. 21 3671
[23] Zhao S, Li Z, Zhu C, Yang W, Zhang Z, Armstrong D E J, Grant P S, Ritchie R O and Meyers M A 2021 Sci. Adv. 7 eabb3108
[24] Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G and George E P 2013 Acta Mater. 61 5743
[25] Wang L, Qiao J W, Ma S G, Jiao Z M, Zhang T W, Chen G, Zhao D, Zhang Y and Wang Z H 2018 Mater. Sci. Eng. A 727 208
[26] Tang Y and Li D Y 2022 Sci. Adv. 8 eabp9096
[27] Yin S, Zuo Y, Abu-Odeh A, Zheng H, Li X G, Ding J, Ong S P, Asta M and Ritchie R O 2021 Nat. Commun. 12 4873
[28] Zheng T, Lv J, Wu Y, Wu H H, Liu S, Tang J, Zhou M, Wang H, Liu X, Jiang S and Lu Z 2021 Appl. Phys. Lett. 119 201907
[29] Gao T, Song H, Wang B, Gao Y, Liu Y, Xie Q, Chen Q, Xiao Q and Liang Y 2023 Int. J. Mech. Sci. 237 107800
[30] Shen T Z, Song H Y, An M R and Li Y L 2022 J. Appl. Phys. 131 094304
[31] Qi Y, He T and Feng M 2021 J. Appl. Phys. 129 195104
[32] Tian Y, Fang Q and Li J 2020 Nanotechnology 31 465701
[33] Xu Z, Li G, Zhou Y, Guo C, Huang Y, Hu X, Li X and Zhu Q 2023 J. Alloys Compd. 945 169313
[34] Zhang D, Liu X, Li T, Fu K, Peng Z and Zhu Y 2022 Comput. Mater. Sci. 208 111360
[35] Long J, Pan Q, Tao N and Lu L 2018 Mater. Res. Lett. 6 456
[36] Zhou K, Liu B, Shao S and Yao Y 2017 Phys. Lett. A 381 1163
[37] Tschopp M A and McDowell D L 2007 Appl. Phys. Lett. 90 121916
[38] Park H S, Gall K and Zimmerman J A 2006 J. Mech. Phys. Solids 54 1862
[39] Monk J and Farkas D 2007 Philos. Mag. 87 2233
[40] Lund A C, Nieh T G and Schuh C A 2004 Phys. Rev. B 69 012101
[41] Wang Y, Ding J, Fan Z, Tian L, Li M, Lu H, Zhang Y, Ma E, Li J and Shan Z 2021 Nat. Mater. 20 1371
[42] Burg J A and Dauskardt R H 2016 Nat. Mater. 15 974
[43] Liu X, Xu K, Ni Y, Lu P, Wang G and He L 2022 J. Appl. Phys. 132 075104
[44] Yin B B, Sun W K, Zhang Y and Liew K M 2023 Comput. Methods Appl. Mech. Eng. 403 115739
[45] Joseph J, Stanford N, Hodgson P and Fabijanic D M 2017 Scr. Mater. 129 30
[46] Niu Y, Zhao D, Zhu B, Wang S, Wang Z and Zhao H 2022 Nanotechnology 33 415703
[47] Niu Y, Zhao D, Zhu B, Wang S, Wang Z and Zhao H 2022 Nanotechnology 33 105705
[48] Zimmerman J A, Webb III E B, Hoyt J J, Jones R E, Klein P A and Bammann D J 2004 Modelling Simul. Mater. Sci. Eng. 12 S319
[49] Plimpton S 1995 J. Comput. Phys. 117 1
[50] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[51] Honeycutt J D and Anderson H C 1987 J. Phys. Chem. 91 4950
[52] Stukowski A, Bulatov V V and Arsenlis A 2012 Modelling Simul. Mater. Sci. Eng. 20 085007
[53] Fu Z, Jiang L, Waidini J L, MacDonlad B E, Wen H, Xiong W, Zhang D, Zhou Y, Rupert T J, Chen W and Lavermia E J 2018 Sci. Adv. 4 eaat8712
[54] Peng S, Wei Y and Gao H 2020 Proc. Natl. Acad. Sci. USA 117 5204
[55] Li X, Ono T, Wang Y and Esashi M 2003 Appl. Phys. Lett. 83 3081
[56] Wang J, Huang Q A and Yu H 2008 J. Phys. D:Appl. Phys. 41 165406
[57] Broughton J Q, Meli C A, Vashishta P and Kalia R K 1997 Phys. Rev. B 56 611
[1] Exploring reservoir computing: Implementation via double stochastic nanowire networks
Jian-Feng Tang(唐健峰), Lei Xia(夏磊), Guang-Li Li(李广隶), Jun Fu(付军), Shukai Duan(段书凯), and Lidan Wang(王丽丹). Chin. Phys. B, 2024, 33(3): 037302.
[2] Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip
A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星). Chin. Phys. B, 2023, 32(6): 067402.
[3] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[4] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[5] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[6] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[11] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[12] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[15] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
No Suggested Reading articles found!