Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066104    DOI: 10.1088/1674-1056/aca7ea
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dislocation mechanism of Ni47Co53 alloy during rapid solidification

Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉)
Institute of Advanced Optoelectronic Materials and Technology, School of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
Abstract  Dislocations and other atomic-level defects play a crucial role in determining the macroscopic properties of crystalline materials, but it is extremely difficult to observe the evolution of dislocations due to the limitations of the most advanced experimental techniques. Therefore, in this work, the rapid solidification processes of Ni47Co53 alloy at five cooling rates are studied by molecular dynamics simulation, and the evolutions of their microstructures and dislocations are investigated as well. The results show that face-centered cubic (FCC) structures are formed at the low cooling rate, and the crystalline and amorphous mixture appear at the critical cooling rate, and the amorphous are generated at the high cooling rate. The crystallization temperature and crystallinity decrease with cooling rate increasing. Dislocations are few at the cooling rates of 1×1011 K/s, 5×1012 K/s, and 1×1013 K/s, and they are most abundant at the cooling rates of 5×1011 K/s and 1×1012 K/s, in which their dislocation line lengths are both almost identical. There appear a large number of dislocation reactions at both cooling rates, in which the interconversion between perfect and partial dislocations is primary. The dislocation reactions are more intense at the cooling rate of 5×1011 K/s, and the slip of some dislocations leads to the interconversion between FCC structure and hexagonal close packed (HCP) structure, which causes the twin boundaries (TBs) to disappear. The FCC and HCP are in the same atomic layer, and dislocations are formed at the junction due to the existence of TBs at the cooling rate of 1×1012 K/s. The present research is important in understanding the dislocation mechanism and its influence on crystal structure at atomic scales.
Keywords:  molecular dynamics simulation      rapid solidification      crystal structure      dislocation interaction  
Received:  16 September 2022      Revised:  08 November 2022      Accepted manuscript online:  02 December 2022
PACS:  61.72.Lk (Linear defects: dislocations, disclinations)  
  87.10.Tf (Molecular dynamics simulation)  
  81.30.Fb (Solidification)  
  91.60.Ed (Crystal structure and defects, microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11964005, 11963003, and 62163006), the Fostering Project of Guizhou University, China (Grant Nos. [2020]33 and [2020]76), the Basic Research Program of Guizhou Province, China (Grant Nos. ZK[2022] 042 and ZK[2022] 143), and the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, China (Grant No. 2020-520000-83-01-324061).
Corresponding Authors:  Yong-Chao Liang     E-mail:  20113248@qq.com

Cite this article: 

Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉) Dislocation mechanism of Ni47Co53 alloy during rapid solidification 2023 Chin. Phys. B 32 066104

[1] Correia A N and Machado S A S2003 J. Appl. Electrochem. 33 367
[2] Golodnitsky D, Rosenberg Y and Ulus A2002 Electrochimica Acta 47 2707
[3] Bai A and Hu C C2002 Electrochimica Acta 47 3447
[4] Burzyńska L and Rudnik E2000 Hydrometallurgy 54 133
[5] Thompson A W and Saxton H J1973 Metall. Trans. 4 1599
[6] Celebi O K, Mohammed A S K, Krogstad J A and Sehitoglu H2022 Int. J. Plast. 148 103141
[7] Koehler J1941 Phys. Rev. 60 397
[8] Schoeck G1956 Adv. Appl. Mech. 4 229
[9] Cottrell A H1953 Prog. Met. Phys. 4 205
[10] Lu L, Shen Y, Chen X, Qian L and Lu K2004 Science 304 422
[11] Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G and George E P2017 Acta Mater. 128 292
[12] Miao J, Slone C E, Smith T M, Niu C, Bei H, Ghazisaeidi M, Pharr G M and Mills M J2017 Acta Mater. 132 35
[13] Zhang H, Wei B Q, Ou X Q, Ni S, Zhou K C and Song M2022 J. Phys. Chem. Solids 169 110835
[14] Mohammed A S K and Sehitoglu H2020 Acta Mater. 183 93
[15] Zhou N G, Wu X Y, Wei X Q, Zhou L, Wan Y P and Hu D L2016 J. Cryst. Growth 443 15
[16] Ryningen B, Stokkan G, Kivambe M, Ervik T and Lohne O2011 Acta Mater. 59 7703
[17] Xu J, Wang C B, Zhang W, Ren C L, Gong H F and Huai P2016 Chin. Phys. Lett. 33 026102
[18] Zhu C X and Yu T2020 Chin. Phys. B 29 096101
[19] Yu B Y, Liang Y C, Tian Z A, Liu R S, Gao T H, Xie Q and Mo Y2020 J. Cryst. Growth 535 125533
[20] Liang Y C, Xian G, Zhou L L, Tian Z A, Chen Q, Mo Y F, Liu R S, Gao T H, Xie Q and He M2022 J. Alloys Compd. 891 161953
[21] Zhang D E, Zhou L L, Liang Y C, Tian Z A, Liu R S, Gao T H, Xie Q and Chen Q2020 CrystEngComm 22 7888
[22] Ma R B, Zhou L L, Liang Y C, Chen Q, Tian Z A, Liu R S, Mo Y F, Gao T H and Xie Q2021 Curr. Appl. Phys. 29 18
[23] Plimpton S1995 J. Comput. Phys. 117 1
[24] Pun G P, Yamakov V and Mishin Y2015 Model. Simul. Mater. Sci. Eng. 23 065006
[25] Mihalkovič M and Widom M2007 Phys. Rev. B 75 014207
[26] Mishin Y2004 Acta Mater. 52 1451
[27] Pun G P and Mishin Y2012 Phys. Rev. B 86 134116
[28] Zhao S, Zhang Y and Weber W J2018 Scr. Mater. 145 71
[29] Zhang Y, Jin K, Xue H, Lu C, Olsen R J, Beland L K, Ullah M W, Zhao S, Bei H and Aidhy D S 2016 J. Mater. Res. 31 2363
[30] Shaipov R K, Kerimov E Y and Slyusarenko E M2017 J. Alloys Compd. 701 262
[31] William G and Hoover1985 Phys. Rev. A 31 1695
[32] Nosé S1984 J. Chem. Phys. 81 511
[33] Parrinello M and Rahman A1981 J. Appl. Phys. 52 7182
[34] Stukowski A2009 Model. Simul. Mater. Sci. Eng. 18 015012
[35] Stukowski A2012 Model. Simul. Mater. Sci. Eng. 20 045021
[36] Stukowski A and Albe K2010 Model. Simul. Mater. Sci. Eng. 18 085001
[37] Dunitz J D1991 Pure Appl. Chem. 63 177
[38] Fukasawa T and Sato T 2011 Phys. Chem. Chem. Phys. 13 3187
[39] Liang K, Dong F, Wu G and Liu S2021 Mater. Sci. Semicond. Process. 121 105340
[40] Liu C S, Xia J, Zhu Z G and Sun D Y2001 J. Chem. Phys. 114 8
[41] Schroers J and Paton N2006 Adv. Mater. Process. 164 61
[42] Penn R L and Banfield J F1998 Science 281 969
[43] Kalikmanov V I2013 Nucleation theory (Dordrecht: pringer) pp. 17-41
[44] Zanotto E D and James P F1985 J. Non-Cryst. Solids 74 373
[45] Gleiter H1991 Advanced Structural and Functional Materials, ed. Bunk W G J (Berlin, Heidelberg: Springer) pp. 1-37
[46] Inoue T, Watanabé J and Yamamoto M1974 J. Cryst. Growth 24 418
[47] Kroupa F1960 Cechoslov-Fiz. Zurnal B 10 284
[48] Zhang Y Q, Jiang S Y, Zhu X M and Zhao Y N 2017 Phys. E Low-Dimens. Syst. Nanostructures 90 90
[49] Hirth J P1994 J. Phys. Chem. Solids 55 985
[50] Bulatov V V, Hsiung L L, Tang M, Arsenlis A, Bartelt M C, Cai W, Florando J N, Hiratani M, Rhee M and Hommes G2006 Nature 440 1174
[51] Kusov A A and Vladimirov V I1986 Phys. Status Solidi B 138 135
[52] Christian J W and Mahajan S1995 Prog. Mater. Sci. 39 1
[53] Tian C, Xu L, Cui C and Sun X2015 Metall. Mater. Trans. A 46 4601
[54] Li B Q, Sui M L, Li B, Ma E and Mao S X2009 Phys. Rev. Lett. 102 205504
[55] Zhao F, Wang L, Fan D, Bie B X, Zhou X M, Suo T, Li Y L, Chen M W, Liu C L and Qi M L2016 Phys. Rev. Lett. 116 075501
[56] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H and Gleiter H2006 Scr. Mater. 54 1163
[57] Wei H, Chen Y, Li Z, Shan Q, Yu W and Tang D2021 Mater. Sci. Eng. A 826 142023
[1] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[4] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!