Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020206    DOI: 10.1088/1674-1056/ac7dba
GENERAL Prev   Next  

Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy

Tao-Wen Xiong(熊涛文)1, Xiao-Ping Chen(陈小平)2, Ye-Ping Lin(林也平)1,2,†, Xin-Fu He(贺新福)3,‡, Wen Yang(杨文)3, Wang-Yu Hu(胡望宇)1, Fei Gao(高飞)4, and Hui-Qiu Deng(邓辉球)2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 China Institute of Atomic Energy, Beijing 102413, China;
4 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor MI 48109, USA
Abstract  Irradiation-induced defects frequently impede the slip of dislocations, resulting in a sharp decline in the performance of nuclear reactor structural materials, particularly core structural materials. In the present work, molecular dynamics method is used to investigate the interactions between edge dislocations and three typical irradiation-induced defects (void, Frank loop, and stacking fault tetrahedron) with the sizes of 3 nm, 5 nm, and 7 nm at different temperatures in Fe-10Ni-20Cr alloy. The critical resolved shear stresses (CRSSs) are compared among different defect types after interacting with edge dislocations. The results show that the CRSS decreases with temperature increasing and defect size decreasing for each defect type during the interaction with edge dislocations, except for the case of 3-nm Frank loops at 900 K. According to a comparison, the CRSS in Frank loop is significantly higher than that of others of the same size, which is due to the occurrence of unfaulting and formation of superjog or stacking-fault complex during the interaction. The atomic evolution of irradiation-induced defects after interacting with dislocations can provide a novel insight into the design of new structural materials.
Keywords:  molecular dynamics simulation      edge dislocation      irradiation-induced defects      austenitic stainless steel  
Received:  07 March 2022      Revised:  17 May 2022      Accepted manuscript online:  02 July 2022
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  61.72.Yx (Interaction between different crystal defects; gettering effect)  
  61.80.Hg (Neutron radiation effects)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National MCF Energy Research and Development Program, China (Grant No. 2018YFE0308101) and the China National Nuclear Corporation Centralized Research and Development Project (Grant No. FY18000120).
Corresponding Authors:  Ye-Ping Lin, Xin-Fu He     E-mail:  linyeping@hnu.edu.cn;hexinfu@ciae.ac.cn

Cite this article: 

Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球) Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy 2023 Chin. Phys. B 32 020206

[1] Meric de Bellefon G and van Duysen J C 2016 J. Nucl. Mater. 475 168
[2] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[3] Was G S 2007 Fundamentals of radiation materials science (Berlin Heidelberg: Springer)
[4] Chen X P, He X F, Chen Y C, Jia L X, Yang W, Hu W Y, Gao F and Deng H Q 2020 Modelling Simul. Mater. Sci. Eng. 28 075002
[5] Monnet G 2015 Scr. Mater. 100 24
[6] Edwards D J, Singh B N and Bilde-Sorensen J B 2005 J. Nucl. Mater. 342 164
[7] Byun T S, Hashimoto N, Farrell K and Lee E H 2006 J. Nucl. Mater. 349 251
[8] Rodney D 2005 Nucl. Instrum. Method B: Beam. 228 100
[9] Li X Q and Almazouzi A 2009 J. Nucl. Mater. 385 329
[10] Bacon D J, Osetsky Y N and Rodney D 2009 Dislocation-Obstacle Interactions at the Atomic Level pp. 1-90
[11] Fan H D, Wang Q Y and Ouyang C J 2015 J. Nucl. Mater. 465 245
[12] Osetsky Y N, Stoller R E and Matsukawa Y 2004 J. Nucl. Mater. 329-333 1228
[13] Matsukawa Y, Briceno M and Robertson I M 2009 Microsc. Res. Tech. 72 284
[14] Ma S, Xing F Z, Ta N and Zhang L J 2020 J. Magnes. Alloy. 8 819
[15] Bonny G, Terentyev D, Pasianot R C, Poncé S and Bakaev A 2011 Modelling Simul. Mater. Sci. Eng. 19 085008
[16] Doihara K, Okita T, Itakura M, Aichi M and Suzuki K 2018 Philos. Mag. 98 2061
[17] Dou Y K, Cao H, He X F, Gao J, Cao J l and Yang W 2021 J. Alloys Compd. 857 157556
[18] Hayakawa S, Hayashi Y, Okita T, Itakura M, Suzuki K and Kuriyama Y 2016 Nucl. Mater. Energy. 9 581
[19] Bakaev A V, Terentyev D A, Grigorev P Y and Zhurkin E E 2014 J. Surf. Investig. 8 220
[20] Baudouin J B, Nomoto A, Perez M, Monnet G and Domain C 2015 J. Nucl. Mater. 465 301
[21] Terentyev D and Bakaev A 2013 J. Nucl. Mater. 442 208
[22] Saintoyant L, Lee H J and Wirth B D 2007 J. Nucl. Mater. 361 206
[23] Lee H J, Shim J H and Wirth B D 2011 J. Mater. Res. 22 2758
[24] Fan H D and Wang Q Y 2013 J. Nucl. Mater. 441 211
[25] Matsukawa Y, Osetsky Y N, Stoller R E and Zinkle S J 2005 MSE: A 400-401 366
[26] Briceño M, Kacher J and Robertson I M 2013 J. Nucl. Mater. 433 390
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Osetsky Y N and Bacon D 2003 Modelling Simul. Mater. Sci. Eng. 11 427
[29] Kadoyoshi T, Kaburaki H, Shimizu F, Kimizuka H, Jitsukawa S and Li J 2007 Acta Mater. 55 3073
[30] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[31] Hirth J P and Lothe J 1982 Theory of Dislocations, 2nd edn. (New York: McGraw-Hill Book Company) pp. 652-653
[1] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[4] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[5] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[6] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[7] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[8] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[9] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[10] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[11] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!