Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066203    DOI: 10.1088/1674-1056/ac4a74
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study

Ning Wei(魏宁)1, Ai-Qiang Shi(史爱强)1, Zhi-Hui Li(李志辉)2,3,†, Bing-Xian Ou(区炳显)4, Si-Han Zhao(赵思涵)1, and Jun-Hua Zhao(赵军华)1,‡
1 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China;
2 China Aerodynamics Research and Development Center, Mianyang 621000, China;
3 National Laboratory for Computational Fluid Dynamics, Beijing 100191, China;
4 National Graphene Products Quality Supervision and Inspection Center, Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Wuxi 214174, China
Abstract  The plastic deformation properties of cylindrical pre-void aluminum-magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with the Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.
Keywords:  Al-Mg alloys      molecular dynamics      nanovoid      plastic deformation  
Received:  10 November 2021      Revised:  09 December 2021      Accepted manuscript online:  12 January 2022
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  02.70.Ns (Molecular dynamics and particle methods)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  61.66.Dk (Alloys )  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11502217), the Fundamental Research Funds for the Central Universities (Grant Nos. 2452015054, 2452017122, and JUSRP121042), the China Postdoctoral Science Foundation (Grant Nos. 2015M570854 and 2016T90949), the Projects of the Manned Space Engineering Technology (Grant No. 2020-ZKZX-5011), Development of Large-Scale Spacecraft Flight and Reentry Surveillance and Prediction System, the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education (NUAA) (Grant No. INMD-2019M08), and Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (Grant Nos. FMZ202001 and FMZ202009).
Corresponding Authors:  Zhi-Hui Li, Jun-Hua Zhao     E-mail:  zhli0097@x263.net;junhua.zhao@163.com

Cite this article: 

Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华) Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study 2022 Chin. Phys. B 31 066203

[1] Zhao B, Xie L, Wang L, Hu Z, Zhou S and Bai X 2021 Int. J. Fatigue 143 105993
[2] Moreto J A, Marino C E B, Bose Filho W W, Rocha L A and Fernandes J C S 2014 Corrosion Sci. 84 30
[3] Engler O, Schäfer C and Brinkman H J 2012 Acta Mater. 60 5217
[4] Li J, Ye Z, Fu J, Qi W, Tian Y, Liu L and Wang X 2020 Mater. Charact. 160 110093
[5] Kim S J, Hyun K Y and Jang S K 2012 Curr. Appl. Phys. 12 S24
[6] Gupta S, Singh D, Yadav A, Jain S and Pratap B 2020 Mater. Today: Proc. 28 2358
[7] Starke E A and Staley J T 1996 Prog. Aerospace Sci. 32 131
[8] Li Y, Liu J, Zhang Q and Huang W 2021 Mater. Today Commun. 27 102416
[9] Xie C, Wu S, Yu Y, Zhang H, Hu Y, Zhang M and Wang G 2021 J. Mater. Process. Technol. 291 117039
[10] Zhang H K, Yao Z, Judge C and Griffiths M 2013 J. Nucl. Mater. 443 49
[11] Mo T, Chen Z, Zhou Z, Liu J, He W and Liu Q 2021 Mater. Sci. Engin. A 800 140313
[12] Yang Y, Tan P, Sui Y, Jiang Y and Zhou R 2021 J. Alloys Compd. 867 158920
[13] Wang H, Yi D, Liu H and Wang B 2021 Mater. Lett. 285 129199
[14] Ho P S and Kwok T 1989 Rep. Prog. Phys. 52 301
[15] Gungor M R, Maroudas D and Zhou S J 2000 Appl. Phys. Lett. 77 343
[16] Su Y and Xu S 2016 Mater. Sci. Engin. A 678 153
[17] Sills R B and Boyce B L 2019 Mater. Res. Lett. 8 103
[18] Kou Z, Yang Y, Yang L, Huang B and Luo X 2018 Mater. Sci. Engin. A 737 336
[19] Su M J, Deng Q, An M R and Liu L T 2020 Chin. Phys. B 29 116201
[20] Shang J, Yang F, Li C, Wei N and Tan X 2018 Comput. Mater. Sci. 148 200
[21] Guan Y L, Shao J L and Song W D 2020 Int. J. Mech. Sci. 181 105707
[22] Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W, Liao X, Chen L Q, Hagihara K, Li X, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039
[23] Jing P, Yuan L, Shivpuri R, Xu C, Zhang Y, Shan D and Guo B 2018 Int. J. Plasticity 100 122
[24] Zhang L, Shibuta Y, Lu C and Huang X 2019 Acta Mater. 173 206
[25] Chen W, Zeng X, Chen L, Yang X and Wang F 2020 Mech. Mater. 141 103261
[26] Pogorelko V V and Mayer A E 2016 Mater. Sci. Engin. A 662 227
[27] Su M J, Deng Q, Liu L T, Chen L Y, Su M L and An M R 2021 Chin. Phys. B 30 096201
[28] Bahramyan M, Mousavian R T and Brabazon D 2016 Mater. Sci. Engin. A 674 82
[29] Qi Y, Chen X and Feng M 2020 Mater. Sci. Engin. A 791 139444
[30] Singh S K and Parashar A 2021 Mater. Chem. Phys. 266 124549
[31] Nitol M S, Adibi S, Barrett C D and Wilkerson J W 2020 Mech. Mater. 150 103588
[32] Ye Y J, Qin L, Li J, Liu L and Wu L K 2021 Chin. Phys. B 30 026801
[33] Liu X Y, Ohotnicky P P, Adams J B, Rohrer C L and Hyland R W 1997 Surf. Sci. 373 357
[34] Song H Y and Li Y L 2016 Comput. Mater. Sci. 111 125
[35] Plimpton S 1995 J. Comput. Phys. 117 1
[36] Stukowski A 2012 Model. Simulat. Mater. Sci. Engin. 20 045021
[37] Stukowski A 2013 JOM 66 399
[38] Stukowski A 2010Model. Simulat. Mater. Sci. Engin. 18 2154
[39] Choi B K, Yoon G H and Lee S 2016 Compos. Part B: Engin. 91 119
[40] Zhu J Q, Yang Q S and Liu X 2019 Key Engin. Mater. 804 1
[41] Chabba H, Lemaallem M, Derouiche A and Dafir D 2018 J. Mater. Environ. Sci. 9 93
[42] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[43] Mayer A E and Mayer P N 2015 JETP Lett. 102 80
[44] Zhang D and Picu R C 2004 Model. Simulat. Mater. Sci. Engin. 12 121
[45] Samiri A, Khmich A, Haouas H, Hassani A and Hasnaoui A 2020 Comput. Mater. Sci. 184 109895
[46] Kumar S and Das S K 2018 J. Alloys Compd. 740 626
[47] Du J P, Wang Y J, Lo Y C, Wan L and Ogata S 2016 Phys. Rev. B 94 104110
[48] Wang Y J, Ishii A and Ogata S 2013 Acta Mater. 61 3866
[49] Song H Y, Wang J Y, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 162 199
[50] Lubarda V A, Schneider M S, Kalantar D H, Remington B A and Meyers M A 2004 Acta Mater. 52 1397
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[9] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[10] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[11] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[14] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[15] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
No Suggested Reading articles found!