Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 036104    DOI: 10.1088/1674-1056/ad0146
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy

Yong-Peng Zhao(赵永鹏)1, Yan-Kun Dou(豆艳坤)1,†, Xin-Fu He(贺新福)1,‡, Han Cao(曹晗)1, Lin-Feng Wang(王林枫)1, Hui-Qiu Deng(邓辉球)2, and Wen Yang(杨文)1
1 Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy (CSA) was studied using a molecular dynamics method. We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects. The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V. The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects. Meanwhile, the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects. The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity. Furthermore, the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V. The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA, and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage. These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
Keywords:  concentrated solid-solution alloy      primary radiation damage      molecular dynamics simulation  
Received:  28 July 2023      Revised:  22 September 2023      Accepted manuscript online:  09 October 2023
PACS:  61.72.J- (Point defects and defect clusters)  
  02.70.Ns (Molecular dynamics and particle methods)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the Dean’s Fund of China Institute of Atomic Energy (Grant No. 219256) and the CNNC Science Fund for Talented Young Scholars.
Corresponding Authors:  Yan-Kun Dou, Xin-Fu He     E-mail:  douyankun@cnncmail.cn;hexinfu@cnncmail.cn

Cite this article: 

Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文) Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy 2024 Chin. Phys. B 33 036104

[1] Dewangan S K, Mangish A, Kumar S, Sharma A, Ahn B and Kumar V 2022 Eng. Sci. Technol. 35 101211
[2] Pickering E J, Carruthers A W, Barron P J, Middleburgh S C, Armstrong D E J and Gandy A S 2021 Entropy 23 98
[3] Li J, Meng X, Wan L and Huang Y 2021 J. Manuf. Process 68 293
[4] Yang T, Li C, Zinkle S J, Zhao S, Bei H and Zhang Y 2018 J. Mater Res. 33 3077
[5] Lu C, Yang T, Jin K, Gao N, Xiu P and Zhang Y 2017 Acta Mater. 127 98
[6] Senkov O N, Gild J and Butler T M 2021 J. Alloys Compd. 862 158003
[7] Zhang Y, Zhao S, Weber W J, Nordlund K, Granberg F and Djurabekova F 2017 Curr Opin Solid State Mater Sci. 21 221
[8] Tsai M and Yeh J 2014 Mater. Res. Lett. 2 107
[9] Hu B, Yao B, Wang J, Liu Y, Wang C and Du Y 2020 Intermetallics 118 106701
[10] Jia N, Li Y, Liu X, Zheng Y, Wang B and Wang J 2019 JOM 71 3490
[11] Yang X, Zhang Y and Liaw P K 2012 Procedia Eng. 36 292
[12] Yin X, Dou Y, He X, Jin K, Wang C and Dong Y G 2023 Acta Metall Sin. 36 405
[13] Yin X, Dou Y, He X, Jin K, Wang C and Dong Y 2022 JOM 74 4326
[14] Lee C, Maresca F, Feng R, Chou Y, Ungar T and Widom M 2021 Nat. Commun. 12 5474
[15] Scales R J, Armstrong D E J, Wilkinson A J and Li B S 2020 Materialia 14 100940
[16] Lee C, Song G, Gao MC, Feng R, Chen P and Brechtl J 2018 Acta Mater. 160 158
[17] Jia N, Li Y, Huang H, Chen S, Li D and Dou Y 2021 J. Nucl. Mater. 550 152937
[18] Mei L, Zhang Q, Dou Y, Fu E G, Li L and Chen S 2023 Scr. Mater. 223 115070
[19] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S and Stoller R E 2018 J. Nucl. Mater. 512 450
[20] Stoller R E 2012 Compr. Nucl. Mater. 1 293
[21] Shi T, Su Z, Li J, Liu C, Yang J and He X 2022 Acta Mater. 229 117806
[22] Zhao S, Xiong Y, Ma S, Zhang J, Xu B and Kai J 2021 Acta Mater. 219 117233
[23] Lin Y, Yang T, Lang L, Shan C, Deng H and Hu W 2020 Acta Mater. 196 133
[24] Deluigi O R, Pasianot R C, Valencia F J, Caro A, Farkas D and Bringa E M 2021 Acta Mater. 213 116951
[25] Zhang Y, Stocks G M, Jin K, Lu C, Bei H and Sales B C 2015 Nat. Commun. 6 8736
[26] Levo E, Granberg F, Fridlund C, Nordlund K and Djurabekova F 2017 J. Nucl. Mater. 490 323
[27] Shan C, Lang L, Yang T, Lin Y, Gao F and Deng H 2020 Comput. Mater. Sci. 177 109555
[28] Granberg F, Nordlund K, Ullah M W, Jin K, Lu C and Bei H 2016 Phys. Rev. Lett. 116 135504
[29] Lu C, Li M, Xiu P, Wang X, Velişa G and Jiang L 2021 J. Nucl. Mater. 557 153316
[30] Li H, Zhao L, Yang Y, Zong H and Ding X 2021 J. Nucl. Mater. 555 153140
[31] Zhang Z, Han E and Xiang C 2021 J. Mater. Sci. Technol. 84 230
[32] Trinkaus H, Singh B N and Foreman A J E 1997 J. Nucl. Mater. 249 91
[33] Wang X, Gao N, Wang Y, Liu H, Shu G and Li C 2019 J. Nucl. Mater. 519 322
[34] Dou Y, Zhao Y, He X, Gao J, Cao J and Yang W 2022 J. Nucl. Mater. 573 154096
[35] Zhao Y, Dou Y, He X, Deng H, Wang L and Yang W 2023 Comput Mater Sci. 218 111943
[36] Plimpton S 1995 J. Comput. Phys. 117 1
[37] Qiu R, Chen Y, Liao X, He X, Yang W and Hu W 2021 J. Nucl. Mater. 557 153231
[38] Stukowski A 2009 Model Simul. Mat. Sci. Eng. 18 015012
[39] Stukowski A 2014 JOM 66 399
[40] Stukowski A 2012 Model Simul. Mat. Sci. Eng. 20 045021
[41] Larsen P M, Schmidt S and Schiotz J 2016 Model Simul. Mat. Sci. Eng. 24 055007
[42] Li H, Zhao L, Yang y, Zong H and Ding X 2021 J. Nucl. Mater. 555 153140
[43] Jung W D, Schmidt F A and Danielson G C 1977 Phys. Rev. B 15 659
[44] Senkov O N and Miracle D B 2001 Mater. Res. Bull. 36 2183
[45] Zepeda L A, Rottler J, Han S, Ackland G J, Car R and Srolovitz D J 2004 Phys. Rev. B 70 060102
[46] Qiu R, Chen Y, Gao N, He X, Dou Y, Yang W, Hu W and Deng H 2023 Nucl. Mater. Energy 34 101394
[47] Peng Q, Meng, F, Yang Y, Lu C, Deng H, Wang L, De S and Gao F 2018 Nat. Commun. 9 4880
[1] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[4] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[5] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[6] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[7] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[8] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[9] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[12] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
No Suggested Reading articles found!