CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy |
Yong-Peng Zhao(赵永鹏)1, Yan-Kun Dou(豆艳坤)1,†, Xin-Fu He(贺新福)1,‡, Han Cao(曹晗)1, Lin-Feng Wang(王林枫)1, Hui-Qiu Deng(邓辉球)2, and Wen Yang(杨文)1 |
1 Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China; 2 School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy (CSA) was studied using a molecular dynamics method. We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects. The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V. The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects. Meanwhile, the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects. The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity. Furthermore, the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V. The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA, and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage. These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
|
Received: 28 July 2023
Revised: 22 September 2023
Accepted manuscript online: 09 October 2023
|
PACS:
|
61.72.J-
|
(Point defects and defect clusters)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
Fund: Project supported by the Dean’s Fund of China Institute of Atomic Energy (Grant No. 219256) and the CNNC Science Fund for Talented Young Scholars. |
Corresponding Authors:
Yan-Kun Dou, Xin-Fu He
E-mail: douyankun@cnncmail.cn;hexinfu@cnncmail.cn
|
Cite this article:
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文) Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy 2024 Chin. Phys. B 33 036104
|
[1] Dewangan S K, Mangish A, Kumar S, Sharma A, Ahn B and Kumar V 2022 Eng. Sci. Technol. 35 101211 [2] Pickering E J, Carruthers A W, Barron P J, Middleburgh S C, Armstrong D E J and Gandy A S 2021 Entropy 23 98 [3] Li J, Meng X, Wan L and Huang Y 2021 J. Manuf. Process 68 293 [4] Yang T, Li C, Zinkle S J, Zhao S, Bei H and Zhang Y 2018 J. Mater Res. 33 3077 [5] Lu C, Yang T, Jin K, Gao N, Xiu P and Zhang Y 2017 Acta Mater. 127 98 [6] Senkov O N, Gild J and Butler T M 2021 J. Alloys Compd. 862 158003 [7] Zhang Y, Zhao S, Weber W J, Nordlund K, Granberg F and Djurabekova F 2017 Curr Opin Solid State Mater Sci. 21 221 [8] Tsai M and Yeh J 2014 Mater. Res. Lett. 2 107 [9] Hu B, Yao B, Wang J, Liu Y, Wang C and Du Y 2020 Intermetallics 118 106701 [10] Jia N, Li Y, Liu X, Zheng Y, Wang B and Wang J 2019 JOM 71 3490 [11] Yang X, Zhang Y and Liaw P K 2012 Procedia Eng. 36 292 [12] Yin X, Dou Y, He X, Jin K, Wang C and Dong Y G 2023 Acta Metall Sin. 36 405 [13] Yin X, Dou Y, He X, Jin K, Wang C and Dong Y 2022 JOM 74 4326 [14] Lee C, Maresca F, Feng R, Chou Y, Ungar T and Widom M 2021 Nat. Commun. 12 5474 [15] Scales R J, Armstrong D E J, Wilkinson A J and Li B S 2020 Materialia 14 100940 [16] Lee C, Song G, Gao MC, Feng R, Chen P and Brechtl J 2018 Acta Mater. 160 158 [17] Jia N, Li Y, Huang H, Chen S, Li D and Dou Y 2021 J. Nucl. Mater. 550 152937 [18] Mei L, Zhang Q, Dou Y, Fu E G, Li L and Chen S 2023 Scr. Mater. 223 115070 [19] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S and Stoller R E 2018 J. Nucl. Mater. 512 450 [20] Stoller R E 2012 Compr. Nucl. Mater. 1 293 [21] Shi T, Su Z, Li J, Liu C, Yang J and He X 2022 Acta Mater. 229 117806 [22] Zhao S, Xiong Y, Ma S, Zhang J, Xu B and Kai J 2021 Acta Mater. 219 117233 [23] Lin Y, Yang T, Lang L, Shan C, Deng H and Hu W 2020 Acta Mater. 196 133 [24] Deluigi O R, Pasianot R C, Valencia F J, Caro A, Farkas D and Bringa E M 2021 Acta Mater. 213 116951 [25] Zhang Y, Stocks G M, Jin K, Lu C, Bei H and Sales B C 2015 Nat. Commun. 6 8736 [26] Levo E, Granberg F, Fridlund C, Nordlund K and Djurabekova F 2017 J. Nucl. Mater. 490 323 [27] Shan C, Lang L, Yang T, Lin Y, Gao F and Deng H 2020 Comput. Mater. Sci. 177 109555 [28] Granberg F, Nordlund K, Ullah M W, Jin K, Lu C and Bei H 2016 Phys. Rev. Lett. 116 135504 [29] Lu C, Li M, Xiu P, Wang X, Velişa G and Jiang L 2021 J. Nucl. Mater. 557 153316 [30] Li H, Zhao L, Yang Y, Zong H and Ding X 2021 J. Nucl. Mater. 555 153140 [31] Zhang Z, Han E and Xiang C 2021 J. Mater. Sci. Technol. 84 230 [32] Trinkaus H, Singh B N and Foreman A J E 1997 J. Nucl. Mater. 249 91 [33] Wang X, Gao N, Wang Y, Liu H, Shu G and Li C 2019 J. Nucl. Mater. 519 322 [34] Dou Y, Zhao Y, He X, Gao J, Cao J and Yang W 2022 J. Nucl. Mater. 573 154096 [35] Zhao Y, Dou Y, He X, Deng H, Wang L and Yang W 2023 Comput Mater Sci. 218 111943 [36] Plimpton S 1995 J. Comput. Phys. 117 1 [37] Qiu R, Chen Y, Liao X, He X, Yang W and Hu W 2021 J. Nucl. Mater. 557 153231 [38] Stukowski A 2009 Model Simul. Mat. Sci. Eng. 18 015012 [39] Stukowski A 2014 JOM 66 399 [40] Stukowski A 2012 Model Simul. Mat. Sci. Eng. 20 045021 [41] Larsen P M, Schmidt S and Schiotz J 2016 Model Simul. Mat. Sci. Eng. 24 055007 [42] Li H, Zhao L, Yang y, Zong H and Ding X 2021 J. Nucl. Mater. 555 153140 [43] Jung W D, Schmidt F A and Danielson G C 1977 Phys. Rev. B 15 659 [44] Senkov O N and Miracle D B 2001 Mater. Res. Bull. 36 2183 [45] Zepeda L A, Rottler J, Han S, Ackland G J, Car R and Srolovitz D J 2004 Phys. Rev. B 70 060102 [46] Qiu R, Chen Y, Gao N, He X, Dou Y, Yang W, Hu W and Deng H 2023 Nucl. Mater. Energy 34 101394 [47] Peng Q, Meng, F, Yang Y, Lu C, Deng H, Wang L, De S and Gao F 2018 Nat. Commun. 9 4880 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|