Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066201    DOI: 10.1088/1674-1056/acb48f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates

Minrong An(安敏荣)1, Yuefeng Lei(雷岳峰)3, Mengjia Su(宿梦嘉)2, Lanting Liu(刘兰亭)2, Qiong Deng(邓琼)2,†, Haiyang Song(宋海洋)1,‡, Yu Shang(尚玉)1, and Chen Wang(王晨)4
1 College of New Energy, Xi'an Shiyou University, Xi'an 710065, China;
2 Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
3 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
4 College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract  Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials, but the underlying deformation mechanism is still under the way of exploring. Here, the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates (DPNLs) with different layer thicknesses are investigated using molecular dynamics simulations. The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible, while it affects the plastic deformation mechanism of amorphous layers distinctly. The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs, which is inversely proportional to the layer thickness. It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat. Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces. Furthermore, the main plastic deformation mechanism in crystalline part: grain reorientation, transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti, has also been displayed in the present work. The results may provide a guideline for design of high-performance Ti and its alloy.
Keywords:  dual-phase nanolaminate      molecular dynamics simulation      deformation mechanism      crystallization  
Received:  08 September 2022      Revised:  15 January 2023      Accepted manuscript online:  19 January 2023
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  61.82.Rx (Nanocrystalline materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902254 and 12072286), and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2021JZ-53 and 2018JQ5108), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JK0845).
Corresponding Authors:  Qiong Deng, Haiyang Song     E-mail:  dengqiong24@nwpu.edu.cn;hysong@xsyu.edu.cn

Cite this article: 

Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨) Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates 2023 Chin. Phys. B 32 066201

[1] Peters M and Leyens C 2003 Titanium and Titanium Alloys: Fundamentals and Applications (New York: John Wiley & Sons) pp. 1-35[2] Zheng G M, Tang B, Zhao S K, Wang W Y, Chen X F, Zhu L and Li J S 2022 Acta Mater. 225 117585
[3] Yuan Z W, Han Y T, Zang S L, Chen J, He G Y, Chai Y, Yang Z F and Fu Q 2021 Ceram. Int. 47 10796
[4] Wang W J, Ji Y C, Fang M X, Wang D, Ren S, Otsuka K, Wang Y Z and Ren X B 2022 Acta Mater. 226 117618
[5] Lu K 2016 Nat. Rev. Mater. 1 16019
[6] Sun L G, Wu G, Wang Q and Lu J 2020 Mater. Today 38 114
[7] Hou Z Q, Zhang J Y, Zhang P, Wu K, Li J, Wang Y Q, Liu G, Zhang G J and Sun J 2020 Appl. Surf. Sci. 502 144118
[8] Wu S H, Hou Z Q, Zhang J Y, Wang Y Q, Wu K, Liu G and Sun J 2019 Scr. Mater. 172 61
[9] Zhang Y F, Xue S, Li Q, Li J, Ding J, Niu T J, Su R, Wang H and Zhang X 2019 Acta Mater. 175 466
[10] Liu Y, Chen Y, Yu K Y, Wang H, Chen J and Zhang X 2013 Int. J. Plast. 49 152
[11] Misra A and Krug H 2001 Adv. Eng. Mater. 3 217
[12] Zhang Y F, Li Q, Gong M, Xue S, Ding J, Li J, Cho J, Niu T, Su R Z, Richter N A, Wang H, Wang J and Zhang X 2020 Appl. Surf. Sci. 527 146776
[13] Zhang Y F, Su R, Niu T J, Richter N A, Xue S, Li Q, Ding J, Yang B, Wang H and Zhang X 2020 Scr. Mater. 186 219
[14] Cao Z H, Sun W, Ma Y J, Li Q, Fan Z, Cai Y P, Zhang Z J, Wang H, Zhang X and Meng X K 2020 Acta Mater. 195 240
[15] Wang Y M, Li J, Hamza A V and Barbee T W2007 Proc. Natl. Acad. Sci. USA 104 11155
[16] Doan D Q, Fang T H, Tran A S and Chen T H 2020 J. Phys. Chem. Solids 138 109291
[17] Song H Y, Zhang K, An M R, Wang L, Xiao M X and Li Y L 2019 J. Non-Cryst. Solids 521 119550
[18] Zhang K, Song H Y, Deng Q and Li Y L 2020 J. Non-Cryst. Solids 534 119954
[19] Wang Y Q, Liang X Q, Wu K, Zhang J Y, Liu G and Sun J 2018 Mater. Sci. Eng. A 732 29
[20] Wang Y Q, Kiener D, Liang X Q, Bian J J, Wu K, Zhang J Y, Liu G and Sun J 2018 J. Alloys Compd. 768 88
[21] Wang Y Q, Fritz R, Kiener D, Zhag J Y, Liu G, Kolednik O, Pippan R and Sun J 2019 Acta Mater. 180 73
[22] Wang Y Q, Zhang J Y, Liang X Q, Wu K, Liu G and Sun J 2015 Acta Mater. 95 132
[23] Zhang J Y, Wang Y Q, Liang X Q, Zeng F L, Liu G and Sun J 2015 Acta Mater. 92 140
[24] Liang X Q, Zhang J Y, Wang Y Q, Wu S H, Zeng F, Wu K, Liu G, Zhang G J and Sun J 2016 Mater. Sci. Eng. A 672 153
[25] Spindler M, Menzel S B, Eggs C, Thomas J, Gemming T and Eckert J 2008 Microelectron. Eng. 85 2055
[26] Campo K N, Freitas C C D, Lima D D D and Caram R 2020 J. Mater. Res. Technol. 9 15802
[27] Stranak V, Wulff H, Rebl H, Zietz C, Arndt K, Bogdanowicz R, Nebe B, Bader R, Podbielski A, Hubicka Z and Hippler R 2011 Mater. Sci. Eng. C 31 1512
[28] Turnow H, Wendrock H, Menzel S, Gemming T and Eckert J 2016 Thin Solid Films 598 184
[29] Hong S H, Kim J T, Park H J, Kim Y S, Suh J Y, Na Y S, Lim K R, Park J M and Kim K B 2016 Intermetallics 75 1
[30] Kim Y S, Hong S H, Park H J, Kim J T, Jeong H J, Na Y S, Lim K R, Park J M and Kim K B 2017 J. Alloys Compd. 707 87
[31] Chen J, Zhang Z, Yang G, Fang Z, Yang Z, Li Z and He G 2020 Appl. Surf. Sci. 513 145457
[32] Doan D Q, Fang T H and Chen T H 2020 Tribol. Int. 147 106275
[33] Doan D Q, Fang T H and Chen T H 2021 Sci. Rep. 11 1
[34] Lu Y Y, Kotoka R, Ligda J P, Cao B B, Yarmolenko S N, Schuster B E and Wei Q 2014 Acta Mater. 63 216
[35] Su M J, Deng Q, Liu L T, Chen L Y, Su M L and An M R 2021 Chin. Phys. B 30 096201
[36] Wei N, Shi A Q, Li Z H, Ou B X, Zhao S H and Zhao J H 2022 Chin. Phys. B 31 066203
[37] Tian Y Y, Luo G J, Fang Q H, Li J and Peng J 2022 Chin. Phys. B 31 066204
[38] Gu B K, Shen S N and Li H 2022 Chin. Phys. B 31 016101
[39] Tran A S and Fang T H 2021 Physica E 126 114470
[40] Song H Y, Xu J J, Zhang Y G, Li S, Wang D H and Li Y L 2017 Mater. Des. 127 173
[41] Song H Y, An M R, Li Y L and Deng Q 2014 J. Appl. Phys. 116 214305
[42] Song H Y, Yin P, Zuo X D, An M R and Li Y L 2018 J. Non-Cryst. Solids 500 121
[43] Xiao L 2005 Mater. Sci. Eng. A 394 168
[44] Wang Q, Yin Y F, Sun Q Y, Xiao L and Sun J 2014 J. Mater. Res. 29 569
[45] Su M J, Deng Q, An M R, Liu L T and Chen L Y 2021 J. Alloys Compd. 868 159282
[46] Plimpton S1995 J. Comput. Phys. 117 1
[47] Wadley H N G, Zhou X, Johnson R A and Neurock M 2001 Prog. Mater. Sci. 46 329
[48] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smith G D W, Cliftond P H, Martens R L and Kelly T F 2001 Acta Mater. 49 4005
[49] Tian Y Y, Li J, Hu Z Y, Wang Z P and Fang Q H 2017 Chin. Phys. B 26 126802
[50] Chen S D, Ke F J, Zhou M and Bai Y L 2007 Acta Mater. 55 3169
[51] Faken D and Jónsson H 1994 Comput. Mater. Sci. 2 279
[52] Shimizu F, Ogata S and Li J 2007 Mater. Trans. 48 2923
[53] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[54] Ashby M F 1993 Acta Metall. Mater. 41 1313
[55] Zhu X Y, Liu X J, Zeng F and Pan F 2010 Trans. Nonferr. Metal. Soc. 20 110
[56] Su M J, Deng Q, An M R, Liu L T and Ma C B 2019 Comput. Mater. Sci. 158 149
[57] Greer A L and Ma E 2007 MRS Bull. 32 611
[58] An M R, Deng Q, Li Y L, Song H Y, Su M J and Cai J 2017 Mater. Des. 127 204
[59] Ren J Q, Sun Q Y, Xiao L, Ding X D and Sun J 2014 Comput. Mater. Sci. 92 8
[60] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J and Ma E 2014 Nat. Commun. 5 3297
[61] Sun Q, Zhang X Y, Ren Y, Tu J and Liu Q2014 Scr. Mater. 90-91 41
[62] Zhao H L, Hu X Y, Song M and Ni S 2017 Scr. Mater. 132 63
[63] Yu Q, Kacher J, Gammer C, Traylor R, Samanta A, Yang Z Z and Minor A M 2017 Scr. Mater. 140 9
[64] Hong D H, Lee T W, Lim S H, Kim W Y and Hwang S K 2013 Scr. Mater. 69 405
[65] Wu H C, Kumar A, Wang J, Bi X F, Tomé C N, Zhang Z and Mao S X 2016 Sci. Rep. 6 24370
[66] Chen P, Wang F X and Li B 2019 Acta Mater. 171 65
[67] An M R, Su M J, Deng Q, Song H Y, Wang C and Shang Y 2020 Chin. Phys. B 29 046201
[68] Yang J X, Zhao H L, Gong H R, Song M and Ren Q Q 2018 Sci. Rep. 8 1992
[69] An M R, Song H Y, Deng Q, Su M J and Liu Y M 2019 J. Appl. Phys. 125 165307
[70] Wang Q Q, Liu Z Q, Wang B and Mohsan A U H 2017 Mater. Sci. Eng. A 690 32
[71] Wang G, Liu Y H, Yu P, Zhao D Q, Pan M X and Wang W H 2006 Appl. Phys. Lett. 89 251909
[72] He Y, Hu S M, Zhu W L and Ouyang G 2020 J. Phys. D: Appl. Phys. 53 125101
[73] Zhao Y P, Tan S L and Ouyang G 2021 J. Phys. D: Appl. Phys. 54 145107
[74] Song H Y, Wang M, Deng Q and Li Y L 2018 J. Non-Cryst. Solids 490 13
[75] Cui Y, Shibutani Y, Li S, Huang P and Wang F 2017 J. Alloys Compd. 693 285
[76] Zhang Y Y, Lin X, Gao X H, Su X L, Luo S B and Huang W D 2021 Intermetallics 136 107256
[77] Song K K, Han X L, Pauly S, Qin Y S, Kosiba K, Peng C X, Gong J H, Chen P X, Wang L, Sarac B, Ketov S, Mühlbacher M, Spieckermann F, Kaban I and Eckert J 2018 Mater. Des. 139 132
[1] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[7] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
No Suggested Reading articles found!