Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016102    DOI: 10.1088/1674-1056/acf82c
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Anelasticity to plasticity transition in a model two-dimensional amorphous solid

Baoshuang Shang(尚宝双)
Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely, elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity. Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.
Keywords:  amorphous solid      deformation mechanism      anelasticity to plasticity transition      molecular dynamics simulation  
Received:  05 July 2023      Revised:  17 August 2023      Accepted manuscript online:  09 September 2023
PACS:  61.43.-j (Disordered solids)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
Fund: Project supported by Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2019B030302010), the National Natural Science Foundation of China (Grant No. 52130108), Guangdong Basic and Applied Basic Research, China (Grant No. 2021B1515140005), and Pearl River Talent Recruitment Program (Grant No. 2021QN02C04).
Corresponding Authors:  Baoshuang Shang     E-mail:  shangbaoshuang@sslab.org.cn

Cite this article: 

Baoshuang Shang(尚宝双) Anelasticity to plasticity transition in a model two-dimensional amorphous solid 2024 Chin. Phys. B 33 016102

[1] Schuh C, Hufnagel T and Ramamurty U 2007 Acta Mater. 55 4067
[2] Wang W H 2012 Prog. Mater. Sci 57 487
[3] Hufnagel T, Schuh C and Falk M 2016 Acta Mater. 109 375
[4] Cheng Y Q and Ma E 2011 Prog. Mater. Sci 56 379
[5] Barrat J and Lemaitre A 2011 Heterogeneities in amorphous systems under shear (Oxford University Press) p. 246
[6] Nicolas A, Ferrero E, Martens K and Barrat J 2018 Rev. Mod. Phys.90 045006
[7] Argon A 1979 Acta Metallurgica 27 47
[8] Shi Y F and Falk M 2005 Phys. Rev. Lett. 95 095502
[9] Schall P, Weitz D and Spaepen F 2007 Science 318 1895
[10] Karmakar S, Lerner E and Procaccia I 2010 Phys. Rev. E 82 055103
[11] Lin J and Zheng W 2017 Phys. Rev. E 96 033002
[12] Lerner E and Procaccia I 2009 Phys. Rev. E 79 066109
[13] Maloney C and Lemaitre A 2004 Phys. Rev. Lett. 93 016001
[14] Krisponeit J, Pitikaris S, Avila K, Küchemann S, Krüger A and Samwer K 2014 Nat. Commun. 5 3616
[15] Antonaglia J, Wright W, Gu X J, Byer R, Hufnagel T, LeBlanc M, Uhl J and Dahmen K 2014 Phys. Rev. Lett. 112 155501
[16] Lagogianni A, Liu C, Martens K and Samwer K 2018 Eur. Phys. J. B 91 104
[17] Shang B S, Rottler J, Guan P F and Barrat J 2019 Phys. Rev. Lett. 122 105501
[18] Duan J, Wang Y J, Dai L H and Jiang M Q 2023 Phys. Rev. Mater. 7 013601
[19] Argon A 2013 Philos. Mag. 93 3795
[20] Xu B, Falk M, Li J F and Kong L T 2017 Phys. Rev. B 95 144201
[21] Richard D, Ozawa M, Patinet S, Stanifer E, Shang B S, Ridout S, Xu B, Zhang G, Morse P, Barrat J, Berthier L, Falk M, Guan P F, Liu A, Martens K, Sastry S, Vandembroucq D, Lerner E and Manning M 2020 Phys. Rev. Mater. 4 113609
[22] Ebrahem F, Bamer F and Markert B 2020 Phys. Rev. E 102 033006
[23] Regev I, Weber J, Reichhardt C, Dahmen K and Lookman T 2015 Nat. Commun. 6 8805
[24] Harmon J, Demetriou M, Johnson W and Samwer K 2007 Phys. Rev. Lett. 99 135502
[25] Wang W H 2019 Prog. Mater. Sci. 106 100561
[26] Costa M, Londoño J, Blatter A, Hariharan A, Gebert A, Carpenter M and Greer A 2023 Acta Mater. 244 118551
[27] Tomida T and Egami T 1993 Phys. Rev. B 48 3048
[28] Shang B S, Wang W H and Guan P F 2022 Acta Mater. 225 117557
[29] Regev I, Lookman T and Reichhardt C 2013 Phys. Rev. E 88 062401
[30] Fiocco D, Foffi G and Sastry S 2014 Phys. Rev. Lett. 112 025702
[31] Barbot A, Lerbinger M, Hernandez-Garcia A, García-García R, Falk M, Vandembroucq D and Patinet S 2018 Phys. Rev. E 97 033001
[32] Thompson A, Aktulga H, Berger R, Bolintineanu D, Brown W, Crozier P, in t Veld J, Kohlmeyer A, Moore S, Nguyen T, Shan R, Stevens M, Tranchida J, Trott C and Plimpton S 2022 Computer Physics Communications 271 108171
[33] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[34] Patinet S, Vandembroucq D and Falk M 2016 Phys. Rev. Lett. 117 045501
[35] Mizuno H, Mossa S and Barrat J 2013 Phys. Rev. E 87 042306
[36] Lerbinger M, Barbot A, Vandembroucq D and Patinet S 2022 Phys. Rev. Lett. 129 195501
[37] Castellanos D, Roux S and Patinet S 2021 Comptes Rendus. Physique 22 135
[38] Castellanos D, Roux S and Patinet S 2022 Acta Mater. 241 118405
[39] Lemaitre A and Maloney C 2006 J. Stat. Phys. 123 415
[40] Blank-Burian M and Heuer A 2018 Phys. Rev. E 98 033002
[41] Wang Z and Wang W H 2018 Natl. Sci. Rev. 6 304
[1] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[4] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[5] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[6] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[7] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[8] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[9] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[12] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
No Suggested Reading articles found!