CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass |
Tzu-Chia Chen1, Mahyuddin KM Nasution2,†, Abdullah Hasan Jabbar3,‡, Sarah Jawad Shoja4, Waluyo Adi Siswanto5, Sigiet Haryo Pranoto6, Dmitry Bokov7, Rustem Magizov8, Yasser Fakri Mustafa9, A. Surendar10, Rustem Zalilov11, Alexandr Sviderskiy12, Alla Vorobeva13, Dmitry Vorobyev13, and Ahmed Alkhayyat14 |
1 Dhurakij Pundit University, Bangkok 10210, Thailand; 2 Data Science and Computational Intelligence Research Group, Universitas Sumatera Utara, Medan, Indonesia; 3 Optical Department, College of Health and Medical Technology, Sawa University, Ministry of Higher Education and Scientific Research, Al-Muthanaa, Samawah, Iraq; 4 College of Health&Medical Technology, Al-Ayen University, Iraq; 5 Faculty of Engineering, Universitas Muhammadiyah Surakarta, Jawa Tengah 57102, Indonesia; 6 Department of Mechanical Engineering, Faculty of Science and Technology, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia; 7 Institute of Pharmacy, Sechenov First Moscow State Medical University,; 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russia; 8 Kazan Federal University, Kazan, Russia; 9 Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq 10 Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India 11 Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia 12 Innovative University of Eurasia, Pavlodar, Republic of Kazakhstan 13 K. G. Razumovsky Moscow State University of Technologies and Management(The First Cossack University), Moscow 109004, Russia 14 College of Technical Engineering, The Islamic University, Najaf, Iraq |
|
|
Abstract Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses (MGs). In this work, molecular dynamics (MD) simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni$_{80}$P$_{20 }$MGs. For this purpose, the samples are prepared with cooling rates of $10^{10}$ K/s-$10^{12}$ K/s to make glassy alloys with different atomic configurations. Firstly, it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen, indicating the aggregations in both elastically soft and hard regions. After the primary evaluations, the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations. The results indicate that the sample with intermediate structural heterogeneity prepared with 10$^{11}$ K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation. The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.
|
Received: 27 December 2021
Revised: 16 March 2022
Accepted manuscript online: 28 March 2022
|
PACS:
|
64.70.pe
|
(Metallic glasses)
|
|
78.55.Qr
|
(Amorphous materials; glasses and other disordered solids)
|
|
Corresponding Authors:
Mahyuddin KM Nasution, Abdullah Hasan Jabbar
E-mail: mahyuddin.nasution198@gmail.com;abdullah.hasan.j@sawa-un.edu.iq
|
Cite this article:
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass 2022 Chin. Phys. B 31 096401
|
[1] Wu Y, Xu B, Sun Y and Guan P 2021 Chin. Phys. B 30 057103 [2] Shi H, Zhou H, Zhou Z, Ding Y, Liu W and Ji J 2022 J. Non-Cryst. Solids 576 121246 [3] Chen T C, Rajiman R, Elveny M, Guerrero J W G, Lawal A I, Dwijendra N K A, Surendar A, Danshina S D and Zhu Y 2021 Arab. J. Sci. Eng. [4] Best J P, Ostergaard H E, Li B, Stolpe M, Yang F, Nomoto K, Hasib M T, Muránsky O, Busch R, Li X and Kruzic J J 2020 Addit. Manuf. 36 101416 [5] Gammer C, Rentenberger C, Beitelschmidt D, Minor A M and Eckert J 2021 Mater. Des. 209 109970 [6] Li D M, Chen L S, Yu P, Ding D and Xia L 2020 Chin. Phys. Lett. 37 86401 [7] Lou Y, Liu X, Yang X, Ge Y, Zhao D, Wang H, Zhang L C and Liu Z 2020 Intermetallics 118 106687 [8] Di S, Wang Q, Yang Y, Liang T, Zhou J, Su L, Yin K, Zeng Q, Sun L and Shen B 2022 J. Mater. Sci. Technol. 97 20 [9] Sun Q, Miskovic D M, Kong H and Ferry M 2021 Appl. Surf. Sci. 546 149048 [10] Dong J, Feng Y H, Huan Y, Yi J, Wang W H, Bai H Y and Sun B A 2020 Chin. Phys. Lett. 37 017103 [11] Das A, Dufresne E M and Maaß R 2020 Acta Mater. 196 723 [12] Zhu Q, Zhang M, Jin X, Yang H, Jia L and Qiao J 2021 J. Mater. Res. 36 2047 [13] Wang N, Ding J, Yan F, Asta M, Ritchie R O and Li L 2018 npj Comput. Mater. 4 19 [14] Guo W, Shao Y, Zhao M, Lü S and Wu S 2020 J. Alloys Compd. 819 152997 [15] Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 J. Non-Cryst. Solids 506 39 [16] Wakeda M and Saida J 2019 Sci. Technol. Adv. Mater. 20 632 [17] Shayakhmetov Y, Vorobeva A, Burlankov S, Bogonosov K, Fomin A, Goncharov A, Krasnikov S, Nikolaeva S, Ovsyannikova A and Zekiy A O 2021 Mater. Res. 24 [18] Ebner C, Escher B, Gammer C, Eckert J, Pauly S and Rentenberger C 2018 Acta Mater. 160 147 [19] Samavatian M, Gholamipour R, Amadeh A A and Samavatian V 2020 Physica B 595 412390 [20] Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 Mater. Sci. Eng. A 753 218 [21] Li S, Huang P and Wang F 2019 Comput. Mater. Sci. 166 318 [22] Wang P and Yang X 2020 Comput. Mater. Sci. 185 109965 [23] Kim Y H, Lim K R, Lee D W, Choi Y S and Na Y S 2020 Met. Mater. Int. [24] Kang S J, Cao Q P, Liu J, Tang Y, Wang X D, Zhang D X, Ahn I S, Caron A and Jiang J Z 2019 J. Alloys Compd. 795 493 [25] Utz M, Debenedetti P G and Stillinger F H 2000 Phys. Rev. Lett. 84 1471 [26] Zhang M, Wang Y M, Li F X, Jiang S Q, Li M Z and Liu L 2017 Sci. Rep. 7 625 [27] Jiang S, Huang Y and Li M 2019 Chin. Phys. B 28 046103 [28] Concustell A, Mér F O, Surinach S, Baró M D and Greer A L 2009 Philos. Mag. Lett. 89 831 [29] Sheng H W, Ma E and Kramer M J 2012 JOM 64 856 [30] Plimpton S 1995 J. Comput. Phys. 117 1 [31] Martyna G J, Tobias D J and Klein M L 1994 J. Chem. Phys. 101 4177 [32] Priezjev N V 2019 Comput. Mater. Sci. 168 125 [33] Duan G, Lind M L, Demetriou M D, Johnson W L, Goddard III W A, Çaǵin T and Samwer K 2006 Appl. Phys. Lett. 89 151901 [34] Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K and Chen M W 2016 Nat. Commun. 7 11516 [35] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701 [36] Chiles J P and Delfiner P 2009 Geostatistics:modeling spatial uncertainty, Vol. 497 (John Wiley & Sons) [37] Firouzianbandpey S, Griffiths D V, Ibsen L B and Andersen L V 2014 Can. Geotech. J. 51 844 [38] Kosiba K, Şopu D, Scudino S, Zhang L, Bednarcik J and Pauly S 2019 Int. J. Plast. 119 156 [39] Shang B, Wang W, Greer A L and Guan P 2021 Acta Mater. 213 116952 [40] Kono Y, Higo Y, Gréaux S, Shibazaki Y, Yamada R, Kuwahara H and Kondo N 2021 High Press. Res. 1 [41] Hayat F, Yin J, Tabassum A, Hou H, Lan S and Feng T 2020 Comput. Mater. Sci. 179 109681 [42] Priezjev N V 2019 J. Mater. Res. 34 2664 [43] Wang M, Liu H, Li J, Jiang Q, Yang W and Tang C 2020 J. Non. Cryst. Solids 535 119963 [44] Ross P, Kühemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K and Maaß R 2017 Acta Mater. 138 111 [45] Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M and Liu R P 2018 Mater. Des. 158 248 [46] Tong Y, Dmowski W, Bei H, Yokoyama Y and Egami T 2018 Acta Mater. 148 384 [47] Reddy K V and Pal S 2019 Comput. Mater. Sci. 158 324 [48] Guo W, Yamada R, Saida J, Lü S and Wu S 2018 Nanoscale Res. Lett. 13 398 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|