Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 096401    DOI: 10.1088/1674-1056/ac615e

Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass

Tzu-Chia Chen1, Mahyuddin KM Nasution2,†, Abdullah Hasan Jabbar3,‡, Sarah Jawad Shoja4, Waluyo Adi Siswanto5, Sigiet Haryo Pranoto6, Dmitry Bokov7, Rustem Magizov8, Yasser Fakri Mustafa9, A. Surendar10, Rustem Zalilov11, Alexandr Sviderskiy12, Alla Vorobeva13, Dmitry Vorobyev13, and Ahmed Alkhayyat14
1 Dhurakij Pundit University, Bangkok 10210, Thailand;
2 Data Science and Computational Intelligence Research Group, Universitas Sumatera Utara, Medan, Indonesia;
3 Optical Department, College of Health and Medical Technology, Sawa University, Ministry of Higher Education and Scientific Research, Al-Muthanaa, Samawah, Iraq;
4 College of Health&Medical Technology, Al-Ayen University, Iraq;
5 Faculty of Engineering, Universitas Muhammadiyah Surakarta, Jawa Tengah 57102, Indonesia;
6 Department of Mechanical Engineering, Faculty of Science and Technology, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia;
7 Institute of Pharmacy, Sechenov First Moscow State Medical University,;
8 Trubetskaya St., Bldg. 2, Moscow 119991, Russia;
8 Kazan Federal University, Kazan, Russia;
9 Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq 10 Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India 11 Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia 12 Innovative University of Eurasia, Pavlodar, Republic of Kazakhstan 13 K. G. Razumovsky Moscow State University of Technologies and Management(The First Cossack University), Moscow 109004, Russia 14 College of Technical Engineering, The Islamic University, Najaf, Iraq
Abstract  Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses (MGs). In this work, molecular dynamics (MD) simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni$_{80}$P$_{20 }$MGs. For this purpose, the samples are prepared with cooling rates of $10^{10}$ K/s-$10^{12}$ K/s to make glassy alloys with different atomic configurations. Firstly, it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen, indicating the aggregations in both elastically soft and hard regions. After the primary evaluations, the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations. The results indicate that the sample with intermediate structural heterogeneity prepared with 10$^{11}$ K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation. The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.
Keywords:  metallic glasses      mechanical properties      molecular dynamics simulation      disordered solids  
Received:  27 December 2021      Revised:  16 March 2022      Accepted manuscript online:  28 March 2022
PACS: (Metallic glasses)  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
Corresponding Authors:  Mahyuddin KM Nasution, Abdullah Hasan Jabbar     E-mail:;

Cite this article: 

Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass 2022 Chin. Phys. B 31 096401

[1] Wu Y, Xu B, Sun Y and Guan P 2021 Chin. Phys. B 30 057103
[2] Shi H, Zhou H, Zhou Z, Ding Y, Liu W and Ji J 2022 J. Non-Cryst. Solids 576 121246
[3] Chen T C, Rajiman R, Elveny M, Guerrero J W G, Lawal A I, Dwijendra N K A, Surendar A, Danshina S D and Zhu Y 2021 Arab. J. Sci. Eng.
[4] Best J P, Ostergaard H E, Li B, Stolpe M, Yang F, Nomoto K, Hasib M T, Muránsky O, Busch R, Li X and Kruzic J J 2020 Addit. Manuf. 36 101416
[5] Gammer C, Rentenberger C, Beitelschmidt D, Minor A M and Eckert J 2021 Mater. Des. 209 109970
[6] Li D M, Chen L S, Yu P, Ding D and Xia L 2020 Chin. Phys. Lett. 37 86401
[7] Lou Y, Liu X, Yang X, Ge Y, Zhao D, Wang H, Zhang L C and Liu Z 2020 Intermetallics 118 106687
[8] Di S, Wang Q, Yang Y, Liang T, Zhou J, Su L, Yin K, Zeng Q, Sun L and Shen B 2022 J. Mater. Sci. Technol. 97 20
[9] Sun Q, Miskovic D M, Kong H and Ferry M 2021 Appl. Surf. Sci. 546 149048
[10] Dong J, Feng Y H, Huan Y, Yi J, Wang W H, Bai H Y and Sun B A 2020 Chin. Phys. Lett. 37 017103
[11] Das A, Dufresne E M and Maaß R 2020 Acta Mater. 196 723
[12] Zhu Q, Zhang M, Jin X, Yang H, Jia L and Qiao J 2021 J. Mater. Res. 36 2047
[13] Wang N, Ding J, Yan F, Asta M, Ritchie R O and Li L 2018 npj Comput. Mater. 4 19
[14] Guo W, Shao Y, Zhao M, Lü S and Wu S 2020 J. Alloys Compd. 819 152997
[15] Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 J. Non-Cryst. Solids 506 39
[16] Wakeda M and Saida J 2019 Sci. Technol. Adv. Mater. 20 632
[17] Shayakhmetov Y, Vorobeva A, Burlankov S, Bogonosov K, Fomin A, Goncharov A, Krasnikov S, Nikolaeva S, Ovsyannikova A and Zekiy A O 2021 Mater. Res. 24
[18] Ebner C, Escher B, Gammer C, Eckert J, Pauly S and Rentenberger C 2018 Acta Mater. 160 147
[19] Samavatian M, Gholamipour R, Amadeh A A and Samavatian V 2020 Physica B 595 412390
[20] Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 Mater. Sci. Eng. A 753 218
[21] Li S, Huang P and Wang F 2019 Comput. Mater. Sci. 166 318
[22] Wang P and Yang X 2020 Comput. Mater. Sci. 185 109965
[23] Kim Y H, Lim K R, Lee D W, Choi Y S and Na Y S 2020 Met. Mater. Int.
[24] Kang S J, Cao Q P, Liu J, Tang Y, Wang X D, Zhang D X, Ahn I S, Caron A and Jiang J Z 2019 J. Alloys Compd. 795 493
[25] Utz M, Debenedetti P G and Stillinger F H 2000 Phys. Rev. Lett. 84 1471
[26] Zhang M, Wang Y M, Li F X, Jiang S Q, Li M Z and Liu L 2017 Sci. Rep. 7 625
[27] Jiang S, Huang Y and Li M 2019 Chin. Phys. B 28 046103
[28] Concustell A, Mér F O, Surinach S, Baró M D and Greer A L 2009 Philos. Mag. Lett. 89 831
[29] Sheng H W, Ma E and Kramer M J 2012 JOM 64 856
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Martyna G J, Tobias D J and Klein M L 1994 J. Chem. Phys. 101 4177
[32] Priezjev N V 2019 Comput. Mater. Sci. 168 125
[33] Duan G, Lind M L, Demetriou M D, Johnson W L, Goddard III W A, Çaǵin T and Samwer K 2006 Appl. Phys. Lett. 89 151901
[34] Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K and Chen M W 2016 Nat. Commun. 7 11516
[35] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701
[36] Chiles J P and Delfiner P 2009 Geostatistics:modeling spatial uncertainty, Vol. 497 (John Wiley & Sons)
[37] Firouzianbandpey S, Griffiths D V, Ibsen L B and Andersen L V 2014 Can. Geotech. J. 51 844
[38] Kosiba K, Şopu D, Scudino S, Zhang L, Bednarcik J and Pauly S 2019 Int. J. Plast. 119 156
[39] Shang B, Wang W, Greer A L and Guan P 2021 Acta Mater. 213 116952
[40] Kono Y, Higo Y, Gréaux S, Shibazaki Y, Yamada R, Kuwahara H and Kondo N 2021 High Press. Res. 1
[41] Hayat F, Yin J, Tabassum A, Hou H, Lan S and Feng T 2020 Comput. Mater. Sci. 179 109681
[42] Priezjev N V 2019 J. Mater. Res. 34 2664
[43] Wang M, Liu H, Li J, Jiang Q, Yang W and Tang C 2020 J. Non. Cryst. Solids 535 119963
[44] Ross P, Kühemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K and Maaß R 2017 Acta Mater. 138 111
[45] Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M and Liu R P 2018 Mater. Des. 158 248
[46] Tong Y, Dmowski W, Bei H, Yokoyama Y and Egami T 2018 Acta Mater. 148 384
[47] Reddy K V and Pal S 2019 Comput. Mater. Sci. 158 324
[48] Guo W, Yamada R, Saida J, Lü S and Wu S 2018 Nanoscale Res. Lett. 13 398
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[6] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[7] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[14] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[15] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
No Suggested Reading articles found!