Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016109    DOI: 10.1088/1674-1056/acd5c2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation

Yizhi Wang(王一志)1,2, Xiuhua Cui(崔秀花)1,2,†, Jing Liu(刘静)1,2, Qun Jing(井群)1,2, Haiming Duan(段海明)1,2,‡, and Haibin Cao(曹海宾)3
1 Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China;
2 School of Physical Science and Technology, Xinjiang University, Urumqi 830017, China;
3 Department of Physics, College of Sciences, Shihezi University, Shihezi 832000, China
Abstract  Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures. To determine the microstructures of Zr—Cu clusters, the stable and metastable geometry of ZrnCu (n=2—12) clusters are screened out via the CALYPSO method using machine-learning potentials, and then the electronic structures are investigated using density functional theory. The results show that the ZrnCu (n≥ 3) clusters possess three-dimensional geometries, ZrnCu (n≥ 9) possess cage-like geometries, and the Zr12Cu cluster has icosahedral geometry. The binding energy per atom gradually gets enlarged with the increase in the size of the clusters, and ZrnCu (n=5, 7, 9, 12) have relatively better stability than their neighbors. The magnetic moment of most ZrnCu clusters is just 1μB, and the main components of the highest occupied molecular orbitals (HOMOs) in the Zr12Cu cluster come from the Zr-d state. There are hardly any localized two-center bonds, and there are about 20 σ-type delocalized three-center bonds.
Keywords:  geometries and electronic structures      magnetic and chemical bonds      machine learning potentials      Zr—Cu clusters  
Received:  11 January 2023      Revised:  04 May 2023      Accepted manuscript online:  16 May 2023
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  31.15.ej (Spin-density functionals)  
  36.40.-c (Atomic and molecular clusters)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864040, 11964037, and 11664038).
Corresponding Authors:  Xiuhua Cui, Haiming Duan     E-mail:  xjcxh0991@xju.edu.cn;dhm@xju.edu.cn

Cite this article: 

Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾) Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation 2024 Chin. Phys. B 33 016109

[1] Inoue A and Shen B 2002 Mater. Trans. 43 766
[2] Zhang T, Inoue A and Masumoto T 1991 Mater. Trans. JIM 32 1005
[3] Inoue A, Kato A, Zhang T, Kim S G and Masumoto T 1991 Mater. Trans. JIM 32 609
[4] Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P and Li Y 2010 J. Appl. Phys. 107 063508
[5] Schroers J and Johnson W L 2004 Phys. Rev. Lett. 93 255506
[6] Lu Z P and Liu C T 2003 Phys. Rev. Lett. 91 115505
[7] Inoue A 2000 Acta Mater. 48 279
[8] Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R and Chen M W 2013 Science 341 376
[9] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[10] Inoue A and Zhang T 1996 Mater. Trans., JIM 37 185
[11] Zhang Y, Mattern N and Eckert J 2011 J. Appl. Phys. 110 093506
[12] Mattern N, Jóvári P, Kaban I Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B and Eckert J 2009 J. Alloys Compd. 485 163
[13] Xu D, Lohwongwatana B, Duan G, Johnson W L and Garland C 2004 Acta Mater. 52 2621
[14] Wang H, Hu T, Qin J Y and Zhang T 2012 J. Appl. Phys. 112 073520
[15] Wang Y, Wang Q, Zhao J and Dong C 2010 Scr. Mater. 63 178
[16] Xia L, Li W H, Fang S S, Wei B C and Dong Y D 2006 J. Appl. Phys. 99 026103
[17] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[18] Hui X, Fang H Z, Chen G L, Shang S L, Wang Y, Qin J Y and Liu Z K 2009 Acta Mater. 57 376
[19] Mendelev M I, Sun Y, Zhang F, Wang C Z and Ho K M 2019 J. Chem. Phys. 151 214502
[20] Sun Y L and Shen J 2009 J. Non-Cryst. 355 1557
[21] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S and Dong K J 2014 J. Non-Cryst. Solids 388 75
[22] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502
[23] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[24] Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J and Bourgeois L 2013 Phys. Rev. Lett. 110 205505
[25] Zhang Y, Mattern N and Eckert J 2012 J. Appl. Phys. 111 053520
[26] Jiang Y Q, Lv J, He W X and Peng P 2021 J. Mol. Liq. 343 117603
[27] Megha, Mondal K, Ghanty T K and Banerjee A 2021 J. Phys. Chem. A 125 2558
[28] Trivedi R and Mishra V 2021 J. Mol. Struct. 1226 129371
[29] Wang D, Zhao S J and Liu L M 2015 J. Phys. Chem. A 119 806
[30] Sha Z D, Pan H, Pei Q X and Zhang Y W 2012 Intermetallics 26 8
[31] Lekka C E 2010 J. Alloys Compd. 504 190
[32] Yang L, Xia J H, Wang Q, Dong C, Chen L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R and Gerward L 2006 Appl. Phys. Lett. 88 241913
[33] Stillinger F H and Weber T A 1982 Phys. Rev. A 25 978
[34] Cogollo-Olivo B H, Seriani N and Montoya J A 2015 Chem. Phys. 461 20
[35] Calaminici P, Pérez-Romero M, Vásquez-Pérez J M and Köster A M 2013 Comput. Theor. Chem. 1021 41
[36] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[37] Tong Q C, Gao P Y, Liu H Y, Xie Y, Lv J, Wang Y C and Zhao J J 2020 J. Phys. Chem. Lett. 11 8710
[38] Schleder G R, Padilha A C M, Acosta C M, Costa M and Fazzio A 2019 J. Phys. Mater. 2 032001
[39] Schmidt J, Marques M R G, Botti S and Marques M A L 2019 npj Comput. Mater. 5
[40] Carrete J, Li W, Mingo N, Wang S D and Curtarolo S 2014 Phys. Rev. X 4 011019
[41] Furmanchuk A o, Agrawal A and Choudhary A 2016 RSC Adv. 6 95246
[42] Gaultois M W, Oliynyk A O, Mar A, Sparks T D, Mulholland G J and Meredig B 2016 APL Mater. 4 053213
[43] Kim C, Pilania G and Ramprasad R 2016 J. Phys. Chem. C 120 14575
[44] Kim C, Pilania G and Ramprasad R 2016 Chem. Mater. 28 1304
[45] Isayev O, Oses C, Toher C, Gossett E, Curtarolo S and Tropsha A 2017 Nat. Commun. 8 15679
[46] Yuan F and Mueller T 2017 Sci. Rep. 7 17594
[47] Kauwe S K, Graser J, Vazquez A, and Sparks T D 2018 Integrat. Mater. Manuf. Innovation 7 43
[48] Sosso G C, Deringer V L, Elliott S R and Csányi G 2018 Mol. Simul. 44 866
[49] Zheng X L, Zheng P and Zhang R Z 2018 Chem. Sci. 9 8426
[50] Oliynyk A O, Adutwum L A, Harynuk J J and Mar A 2016 Chem. Mater. 28 6672
[51] Ward L, Liu R Q, Krishna A, Hegde V I, Agrawal A, Choudhary A and Wolverton C 2017 Phys. Rev. B 96 024104
[52] Balachandran P V, Kowalski B, Sehirlioglu A and Lookman T 2018 Nat. Commun. 9 1668
[53] Graser J, Kauwe S K and Sparks T D 2018 Chem. Mater. 30 3601
[54] Li W, Jacobs R and Morgan D 2018 Comput. Mater. Sci. 150 454
[55] Ryan K, Lengyel J and Shatruk M 2018 J. Am. Chem. Soc. 140 10158
[56] Manzhos S, Dawes R and Carrington T 2015 Int. J. Quantum Chem. 115 1012
[57] Jiang B, Li J and Guo H 2016 Int. Rev. Phys. Chem. 35 479
[58] Behler J 2016 J. Chem. Phys. 145 170901
[59] Mueller T, Hernandez A and Wang C 2020 J. Chem. Phys. 152 050902
[60] Zuo Y X, Chen C, Li X G, Deng Z, Chen Y M, Behler J, Csányi G, Shapeev A V, Thompson A P, Wood M A and Ong S P 2020 J. Phys. Chem. A 124 731
[61] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[62] Schütt K T, Arbabzadah F, Chmiela S, Müller K R and Tkatchenko A 2017 Nat. Commun. 8 13890
[63] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A and Müller K R 2018 J. Chem. Phys. 148 241722
[64] Shapeev A V 2016 Multiscale Model. Simul. 14 1153
[65] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 J. Comput. Phys. 285 316
[66] Unke O T and Meuwly M 2019 J. Chem. Theory Comput. 15 3678
[67] Bartók P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[68] Behler J 2011 J. Chem. Phys. 134 074106
[69] Gastegger M, Schwiedrzik L, Bitterman M, Berzsenyi F and Marquetand P 2018 J. Chem. Phys. 148 241709
[70] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[71] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[72] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[73] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[74] Tong Q C, Luo X S, Adeleke A A, Gao P Y, Xie Y, Liu H Y, Li Q, Wang Y C, Lv J, Yao Y S and Ma Y M 2021 Phys. Rev. B 103 054107
[75] Tong Q C, Xue L T, Lv J, Wang Y C and Ma Y M 2018 Faraday Discuss. 211 31
[76] Lv J, Wang Y C, Zhu L and Ma Y M 2012 J. Chem. Phys. 137 084104
[77] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[78] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[79] Eberhart R and Kennedy J 1995 Proc. 6th Int. Symp. on Micro Machine and Human Science 39
[80] Su C X, Lv J, Li Q, Wang H, Zhang L J, Wang Y C and Ma Y M 2017 J. Phys.:Condens. Matter 29 165901
[81] Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B and Petersson G 2009 Gaussian 09 (Revision C.01)
[82] Zubarev Y and Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207
[83] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[84] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[85] Mulliken R S 1995 J. Chem. Phys. 23 1833
[86] Pauling L 1932 J. Amer. Chem. Soc. 54 3570
[87] Kohout M, Wagner F R and Grin Y 2002 Theor. Chem. Acc. 108 150
[1] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[2] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[3] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[4] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure
Deng-Feng Wang(王登峰), Ji-Ran Liang(梁继然), Chang-Qing Li(李昌青), Wen-Jun Yan(闫文君), Ming Hu(胡明). Chin. Phys. B, 2016, 25(2): 028102.
[7] Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides
Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明). Chin. Phys. B, 2015, 24(1): 016101.
[8] Silicon micro-hemispheres with periodic nanoscale rings produced by the laser ablation of single crystalline silicon
Chen Ming (陈明), Li Shuang (李爽), Cui Qing-Qiang (崔清强), Liu Xiang-Dong (刘向东). Chin. Phys. B, 2013, 22(10): 106101.
[9] High stability of the goldalloy fullerenes:A density functional theory investigation of M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters
Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), Zhang Hong-Yu(张红雨), and Luo You-Hua(罗有华) . Chin. Phys. B, 2012, 21(5): 056102.
[10] Hcp-icosahedron structural transformation induced by the change in Ag concentration during the freezing of (CoAg)561 clusters
Xiao Xu-Yang(肖绪洋) . Chin. Phys. B, 2012, 21(4): 046102.
[11] Icosahedral medium-range order formed in Mg70Zn30 metallic glass: a larger-scale molecular dynamics simulation
Hou Zhao-Yang(侯兆阳), Liu Rang-Su(刘让苏), Tian Ze-An(田泽安), and Wang Jin-Guo(王晋国). Chin. Phys. B, 2011, 20(6): 066102.
[12] Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser
Zhao Song-Qing(赵嵩卿), Yang Li-Min(杨立敏), Liu Wen-Wei(刘闻炜), Zhao Kun(赵昆), Zhou Yue-Liang(周岳亮), and Zhou Qing-Li(周庆莉). Chin. Phys. B, 2010, 19(8): 087204.
[13] Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study
Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路), Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山). Chin. Phys. B, 2010, 19(8): 083602.
[14] Coalescence between Cu57 and Cu58 clusters at a room temperature: molecular dynamics simulations
Zhang Lin (张林), Li Wei (李蔚), Wang Shao-Qing (王绍青). Chin. Phys. B, 2010, 19(7): 073601.
[15] Stability of small Ni-Ti bimetallic clusters studied by density functional theory
Chen Zhen-Gang(陈振岗), Xie Zun(谢尊), Li You-Cheng(李有成), Ma Qing-Min(马庆敏), and Liu Ying(刘英). Chin. Phys. B, 2010, 19(4): 043102.
No Suggested Reading articles found!