Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128703    DOI: 10.1088/1674-1056/ad08a8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein

Rongri Tan(谈荣日)1,†, Kui Xia(夏奎)1, Damao Xun(寻大毛)1,‡, Wenjun Zong(宗文军)1, and Yousheng Yu(余幼胜)2
1 Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
2 School of Science, East China University of Technology, Nanchang 330013, China
Abstract  Prion diseases are a class of fatal neurodegenerative diseases caused by misfolded prion proteins. The main reason is that pathogenic prion protein has a strong tendency to aggregate, which easily induces the damage to the central nervous system. Point mutations in the human prion protein gene can cause prion diseases such as Creutzfeldt-Jakob and Gerstmann's syndrome. To understand the mechanism of mutation-induced prion protein aggregation, the mutants in an aqueous solution are studied by molecular dynamics simulations, including the wild type, V180I, H187R and a double point mutation which is associated with CJD and GSS. After running simulations for 500 ns, the results show that these three mutations have different effects on the kinetic properties of PrP. The high fluctuations around the N-terminal residues of helix 2 in the V180I variant lead to a decrease in hydrogen bonding on helix 2, while an increase in the number of hydrogen bonds between the folded regions promotes the generation of β-sheet. Meanwhile, partial deletion of salt bridges in the H187R and double mutants allows the sub-structural domains of the prion protein to separate, which would accelerate the conversion from PrPC to PrPSc. A similar trend is observed in both SASA and Rg for all three mutations, indicating that the conformational space is reduced and the structure is compact.
Keywords:  prion protein      mutations      misfolding      molecular dynamics simulations  
Received:  16 September 2023      Revised:  19 October 2023      Accepted manuscript online:  02 November 2023
PACS:  87.10.Tf (Molecular dynamics simulation)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  87.15.R- (Reactions and kinetics)  
  87.15.kr (Protein-solvent interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.52073128, 12164002, and 11964012), the Foundation of Educational Committee of Jiangxi Province of China (Grant No.GJJ211112), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant No.2015QNBJRC002).
Corresponding Authors:  Rongri Tan, Damao Xun     E-mail:  rogertanr@hotmail.com

Cite this article: 

Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜) Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein 2023 Chin. Phys. B 32 128703

[1] Yoshida S and Hasegawa T 2022 Neurochem. Int. 155 105307
[2] Brandel J P 2022 Rev. Med. Interne 43 106
[3] Lambert Z J, Greenlee J J and Cassmann E D 2021 Viruses 13 12
[4] Prusiner S B 1998 Proc. Natl. Acad. Sci. USA 95 13363
[5] Collinge J 2004 Annu. Rev. Neurosci. 24 519
[6] Palaniappan C, Narayanan R C and Sekar K 2021 ACS Chem. Neurosci. 12 2810
[7] Zhou S, Liu X, An X, Yao X and Liu H 2017 ACS Chem. Neurosci. 8 2446
[8] Singh R K, Chamachi N G and Chakrabarty S 2017 J. Phys. Chem. B 121 550
[9] Xu Z, Liu H, Wang S, Zhang Q, Yao X, Zhou S and Liu H 2020 ACS Chem. Neurosci. 11 772
[10] Guo J, Ning L, Ren H, Liu H and Yao X 2012 Biochim. Biophys. Acta 1820 116
[11] Rossetti G, Cong X, Caliandro R, Legname G and Carloni P 2011 J. Mol. Biol. 411 700
[12] Scheckel C and Aguzzi A 2018 Nat. Rev. Genet. 19 405
[13] Chakroun N, Fornili A, Prigent S, Kleinjung J, Dreiss C A, Rezaei H and Fraternali F 2013 J. Chem. Theory Comput. 9 2455
[14] Hadzi S, Ondracka A, Jerala R and Hafner-Bratkovic I 2015 FASEB J. 29 882
[15] Singh J, Kumar H, Sabareesan A T and Udgaonkar J B 2015 J. Am. Chem. Soc. 136 16704
[16] Dima R I and Thirumalai D 2015 Proc. Natl. Acad. Sci. USA 101 15335
[17] Lu X, Wintrode P L and Surewicz W K 2007 Proc. Natl. Acad. Sci. USA 104 1510
[18] Cobb N J, Sonnichsen F D, McHaourab H and Surewicz W K 2007 Proc. Natl. Acad. Sci. USA 104 18946
[19] Kovacs G G, Trabattoni G, Hainfellner J A, Ironside J W, Knight R S and Budka H 2007 J. Neurol. 249 1567
[20] Hosszu L L, Wells M A, Jackson G S, Jones S, Batchelor M, Clarke A R, Craven C J, Waltho J P and Collinge J 2005 Biochemistry 44 16649
[21] Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G and Wuthrich K 2000 Proc. Natl. Acad. Sci. USA 97 145
[22] Calzolai L and Zahn R 2003 J. Biol. Chem. 278 35592
[23] Deshpande N, Addess K J, Bluhm W F, Merino-Ott J C, TownsendMerino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z, Green R K, Flippen Anderson J L, Westbrook J, Berman H M and Bourne P E 2005 Nucleic Acids Res. 33 D233
[24] Rose P W, Beran B, Bi C, et al. 2011 Nucleic Acids Res. 39 D392
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[26] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[27] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[28] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. Model. 14 33
[29] Kabsch W and Sander C 1983 Biopolymers 22 2577
[30] Gao Y, Zhu T, Zhang C, Zhang Z H and Mei Y 2018 Chem. Phys. Lett. 706 594
[31] Gu W, Wang T, Zhu J, Shi Y and Liu H 2018 Biophys. Chem. 104 79
[32] Chong S H, Lee C, Kang G, Park M and Ham S 2011 J. Am. Chem. Soc. 133 7075
[33] Guo J J, Ren H, Ning L L, Liu H X and Yao X J 2012 J. Struct. Biol. 178 225
[34] Adrover M, Pauwels K, Prigent S, Chiara C, Xu Z, Chapuis C, Pastore A and Rezaei H 2010 J. Biol. Chem. 285 21004
[35] Zhang J 2011 J. Theor. Biol. 269 88
[36] Lee S, Antony L, Hartmann R, Knaus K J, Surewicz K, Surewicz W K and Yee V C 2010 EMBO J. 29 251
[37] Chen W, van der Kamp M W and Daggett V 2014 Biophys. J. 106 1152
[38] Cobb N J and Surewicz W K 2009 Biochemistry 48 2574
[39] Knaus K J, Morillas M, Swietnicki W, Malone M, Surewicz W K and Yee V C 2001 Nat. Struct. Biol. 8 770
[40] Bjorndahl T C, Zhou G P, Liu X, Perez-Pineiro R, Semenchenko V, Saleem F, Acharya S, Bujold A, Sobsey C A and Wishart D S 2011 Biochemistry 50 1162
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[5] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[6] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[7] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[8] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[9] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[10] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[11] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[12] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[13] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[14] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[15] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
No Suggested Reading articles found!