Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017401    DOI: 10.1088/1674-1056/ac6ee7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Majorana zero modes induced by skyrmion lattice

Dong-Yang Jing(靖东洋)1,2, Huan-Yu Wang(王寰宇)1,2, Wen-Xiang Guo(郭文祥)4,5, and Wu-Ming Liu(刘伍明)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 TIPC-LNE Joint Laboratory on Cryogenic Metrology Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
5 CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  One-dimensional s-wave superconductor with spin-orbit coupling is a platform for the realization of Majorana zero modes. The spin-exchange with the magnetic skyrmion lattice can induce spin-orbit coupling in a s-wave superconductor system and the effects are different from the constant spin-orbit coupling. The strength of the effective spin-orbit coupling as well as the rich topoloigcal phase diagram are directly connected to the radius of the skyrmion lattice R. We obtain the rich topological phase diagram of this system with different skyrmion lattice radii by numerically evaluating the spectrum of the system under the periodic boundary condition, and we also find the Majorana zero modes under the open boundary condition to verify the bulk-edge correspondence.
Keywords:  topological superconductor      Majorana zero mode      spin-orbit coupling  
Received:  21 March 2022      Revised:  01 May 2022      Accepted manuscript online:  12 May 2022
PACS:  74.81.-g (Inhomogeneous superconductors and superconducting systems, including electronic inhomogeneities)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1400243) and the National Natural Science Foundation of China (Grant No. 61835013).
Corresponding Authors:  Wu-Ming Liu     E-mail:  wliu@iphy.ac.cn

Cite this article: 

Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明) Majorana zero modes induced by skyrmion lattice 2023 Chin. Phys. B 32 017401

[1] Wilczek F 2009 Nat. Phys. 5 614
[2] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[3] Stern A 2010 Nature 464 187
[4] Volovik G E 1999 JETP Lett. 70 609
[5] Nayak C, Simon S H, A. Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys 80 1083
[6] Kells G, Meidan D and Brouwer P W 2012 Phys. Rev. B 86 100503(R)
[7] Udupa A, Banerjee A, Sengupta K and Sen D 2021 J. Phys.: Condens. Matter 33 145301
[8] Potter A C and Lee P A 2010 Phys. Rev. Lett. 105 227003
[9] Cook A and Franz M 2011 Phys. Rev. B 84 201105(R)
[10] Buhler A, Lang N, Kraus C V, moller G, Huber S D and Buchler H P 2014 Nat. Commun. 5 4504
[11] Wong S M H 2002 arXiv:hep-ph/0202250
[12] Zamora-Zamora R and Romero-Rochin V 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045301
[13] Han J H, Zang J D, Yang Z H, Park J H and Nagaosa N 2010 Phys. Rev. B 82 094429
[14] Battye R A, Cooper N R and Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401
[15] Stepanov E A, Dutreix C and Katsnelson M I 2017 Phys. Rev. Lett. 118 157201
[16] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401
[17] Luo H B, Li L and Liu W M 2019 Sci. Rep. 9 18804
[18] Li Z H, Dong B, He Y Y, Li X and Chen A Y 2020 Adv. Sci. 7 2001040
[19] Mascot E, Bedow J, Graham M, Rachel S and Morr D K 2020 arXiv:2005.00027 [cond-mat.supr-con]
[20] Read N and Green D 2000 Phys. Rev. B 61 10267
[21] Hatsugai Y and Ryu S 2002 Phys. Rev. B 65 212510
[22] Tewari S, Das Sarma S and Lee D H 2007 Phys. Rev. Lett. 99 037001
[23] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 35005
[24] Marino M 2005 Commun. Math. Phys 253 25
[25] Ono S, Po H C and Shiozaki K 2021 Phys. Rev. Research 3 023086
[26] Yu Y, Wu Y S and Xie X C 2017 Nucl. Phys. B 916 550
[27] Klinovaja J and Loss D 2012 Phys. Rev. B 86 085408
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[12] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!