Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 106301    DOI: 10.1088/1674-1056/acf207
RAPID COMMUNICATION Prev   Next  

Phonon dichroism in proximitized graphene

Wen-Yu Shan(单文语)
Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
Abstract  We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry. We find that in the absence of any type of spin-orbit coupling, phonon dichroism vanishes. Linear and circular phonon dichroism occur in the presence of uniform (staggered) intrinsic spin-orbit coupling and ferromagnetic (antiferromagnetic) exchange coupling. All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point. Our finding provides new possibilities to use phonon dichroism to identify the form of spin-orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.
Keywords:  phonon dichroism      spin-orbit coupling      proximitized graphene      electron-phonon interaction  
Received:  06 June 2023      Revised:  06 August 2023      Accepted manuscript online:  21 August 2023
PACS:  63.22.Rc (Phonons in graphene)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  63.20.kd (Phonon-electron interactions)  
  73.43.-f (Quantum Hall effects)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 11904062), the Starting Research Fund from Guangzhou University (Grant No. RQ2020076), and Guangzhou Basic Research Program, jointed funded by Guangzhou University (Grant No. 202201020186).
Corresponding Authors:  Wen-Yu Shan     E-mail:  wyshan@gzhu.edu.cn

Cite this article: 

Wen-Yu Shan(单文语) Phonon dichroism in proximitized graphene 2023 Chin. Phys. B 32 106301

[1] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501
[2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[4] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[5] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[6] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
[7] Gmitra M and Fabian J 2015 Phys. Rev. B 92 155403
[8] Gmitra M, Kochan D, Högl P and Fabian J 2016 Phys. Rev. B 93 155104
[9] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 8339
[10] Yang B, Tu M F, Kim J, Wu Y, Wang H, Alicea J, Wu R, Bockrath M and Shi J 2016 2D Mater. 3 031012
[11] Wang Z, Ki D K, Khoo J Y, Mauro D, Berger H, Levitov L S and Morpurgo A F 2016 Phys. Rev. X 6 041020
[12] Völkl T, Rockinger T, Drienovsky M, Watanabe K, Taniguchi T, Weiss D and Eroms J 2017 Phys. Rev. B 96 125405
[13] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro Neto A H and Özyilmaz B 2014 Nat. Commun. 5 4875
[14] Omar S and van Wees B J 2017 Phys. Rev. B 95 081404
[15] Dankert A and Dash S P 2017 Nat. Commun. 8 16093
[16] Offidani M, Milletarí M, Raimondi R and Ferreira A 2017 Phys. Rev. Lett. 119 196801
[17] Kaloni T P, Kou L, Frauenheim T and Schwingenschlögl U 2014 Appl. Phys. Lett. 105 233112
[18] Zihlmann S, Cummings A W, Garcia J H, Kedves M, Watanabe K, Taniguchi T, Schönenberger C and Makk P 2018 Phys. Rev. B 97 075434
[19] Ghiasi T S, Ingla-Aynés J, Kaverzin A A and van Wees B J 2017 Nano Lett. 17 7528
[20] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601
[21] Benítez L A, Sierra J F, Torres W S, Arrighi A, Bonell F, Costache M V and Valenzuela S O 2018 Nat. Phys. 14 303
[22] Frank T, Högl P, Gmitra M, Kochan D and Fabian J 2018 Phys. Rev. Lett. 120 156402
[23] Högl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403
[24] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414
[25] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441
[26] Lazić P, Belashchenko K D and Žutić I 2016 Phys. Rev. B 93 241401
[27] Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603
[28] Leutenantsmeyer J C, Kaverzin A A, Wojtaszek M and van Wees B J 2017 2D Mater. 4 014001
[29] Mendes J B S, Alves Santos O, Meireles L M, Lacerda R G, Vilela-Leão L H, Machado F L A, Rodríguez-Suárez R L, Azevedo A and Rezende S M 2015 Phys. Rev. Lett. 115 226601
[30] Swartz A G, Odenthal P M, Hao Y, Ruoff R S and Kawakami R K 2012 ACS Nano 6 10063
[31] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711
[32] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[33] Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603
[34] Hallal A, Ibrahim F, Yang H, Roche S and Chshiev M 2017 2D Mater. 4 025074
[35] Dyrdal A and Barnaś J 2017 2D Mater. 4 034003
[36] Zollner K, Gmitra M and Fabian J 2018 New J. Phys. 20 073007
[37] Zhang J, Zhao B, Zhou T, Xue Y, Ma C and Yang Z 2018 Phys. Rev. B 97 085401
[38] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[39] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[40] Pei Q, Wang X C, Zou J J and Mi W B 2018 Front. Phys. 13 137105
[41] Zollner K and Fabian J 2022 Phys. Rev. B 106 035137
[42] Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R and Rouxel J 1981 Solid State Commun. 40 1067
[43] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425
[44] Barkeshli M, Chung S B and Qi X L 2012 Phys. Rev. B 85 245107
[45] Hamada M, Minamitani E, Hirayama M and Murakami S 2018 Phys. Rev. Lett. 121 175301
[46] Cheng B, Schumann T, Wang Y, Zhang X, Barbalas D, Stemmer S and Armitage N P 2020 Nano Lett. 20 5991
[47] Ren Y, Xiao C, Saparov D and Niu Q 2021 Phys. Rev. Lett. 127 186403
[48] Baydin A, Hernandez F G G, Rodriguez-Vega M, Okazaki A K, Tay F, Noe G T, Katayama I, Takeda J, Nojiri H, Rappl P H O, Abramof E, Fiete G A and Kono J 2022 Phys. Rev. Lett. 128 075901
[49] Xiong G, Chen H, Ma D and Zhang L 2022 Phys. Rev. B 106 144302
[50] Spivak B Z and Andreev A V 2016 Phys. Rev. B 93 085107
[51] Sengupta S, Lhachemi M N Y and Garate I 2020 Phys. Rev. Lett. 125 146402
[52] Liu D and Shi J 2017 Phys. Rev. Lett. 119 075301
[53] Shan W Y 2022 Phys. Rev. B 105 L121302
[54] Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602
[55] Kochan D, Irmer S and Fabian J 2017 Phys. Rev. B 95 165415
[56] Shan W Y 2020 Phys. Rev. B 102 241301
[57] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412
[58] Mariani E and von Oppen F 2008 Phys. Rev. Lett. 100 076801
[59] Castro E V, Ochoa H, Katsnelson M I, Gorbachev R V, Elias D C, Novoselov K S, Geim A K and Guinea F 2010 Phys. Rev. Lett. 105 266601
[60] Mariani E and von Oppen F 2010 Phys. Rev. B 82 195403
[61] Amorim B and Guinea F 2013 Phys. Rev. B 88 115418
[62] Shan W Y 2023 Phys. Rev. Res. 5 L022038
[63] Tuegel T I and Hughes T L 2017 Phys. Rev. B 96 174524
[64] Truell R, Elbaum C and Chick B B 1969 Ultrasonic Methods in Solid State Physics (New York: Academic Press) p. 53
[65] Lüthi B 2004 Physical Acoustics in the Solid State 1st edn. (Berlin Heidelberg: Springer) p. 17
[66] Sonntag J, Reichardt S, Beschoten B and Stampfer C 2021 Nano Lett. 21 2898
[67] Kossacki P, Faugeras C, Kühne M, Orlita M, Mahmood A, Dujardin E, Nair R R, Geim A K and Potemski M 2012 Phys. Rev. B 86 205431
[1] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[2] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[3] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[4] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[7] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[8] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[13] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[14] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[15] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
No Suggested Reading articles found!