|
|
Phonon dichroism in proximitized graphene |
Wen-Yu Shan(单文语)† |
Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China |
|
|
Abstract We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry. We find that in the absence of any type of spin-orbit coupling, phonon dichroism vanishes. Linear and circular phonon dichroism occur in the presence of uniform (staggered) intrinsic spin-orbit coupling and ferromagnetic (antiferromagnetic) exchange coupling. All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point. Our finding provides new possibilities to use phonon dichroism to identify the form of spin-orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.
|
Received: 06 June 2023
Revised: 06 August 2023
Accepted manuscript online: 21 August 2023
|
PACS:
|
63.22.Rc
|
(Phonons in graphene)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 11904062), the Starting Research Fund from Guangzhou University (Grant No. RQ2020076), and Guangzhou Basic Research Program, jointed funded by Guangzhou University (Grant No. 202201020186). |
Corresponding Authors:
Wen-Yu Shan
E-mail: wyshan@gzhu.edu.cn
|
Cite this article:
Wen-Yu Shan(单文语) Phonon dichroism in proximitized graphene 2023 Chin. Phys. B 32 106301
|
[1] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501 [2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [4] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [5] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401 [6] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431 [7] Gmitra M and Fabian J 2015 Phys. Rev. B 92 155403 [8] Gmitra M, Kochan D, Högl P and Fabian J 2016 Phys. Rev. B 93 155104 [9] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 8339 [10] Yang B, Tu M F, Kim J, Wu Y, Wang H, Alicea J, Wu R, Bockrath M and Shi J 2016 2D Mater. 3 031012 [11] Wang Z, Ki D K, Khoo J Y, Mauro D, Berger H, Levitov L S and Morpurgo A F 2016 Phys. Rev. X 6 041020 [12] Völkl T, Rockinger T, Drienovsky M, Watanabe K, Taniguchi T, Weiss D and Eroms J 2017 Phys. Rev. B 96 125405 [13] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro Neto A H and Özyilmaz B 2014 Nat. Commun. 5 4875 [14] Omar S and van Wees B J 2017 Phys. Rev. B 95 081404 [15] Dankert A and Dash S P 2017 Nat. Commun. 8 16093 [16] Offidani M, Milletarí M, Raimondi R and Ferreira A 2017 Phys. Rev. Lett. 119 196801 [17] Kaloni T P, Kou L, Frauenheim T and Schwingenschlögl U 2014 Appl. Phys. Lett. 105 233112 [18] Zihlmann S, Cummings A W, Garcia J H, Kedves M, Watanabe K, Taniguchi T, Schönenberger C and Makk P 2018 Phys. Rev. B 97 075434 [19] Ghiasi T S, Ingla-Aynés J, Kaverzin A A and van Wees B J 2017 Nano Lett. 17 7528 [20] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601 [21] Benítez L A, Sierra J F, Torres W S, Arrighi A, Bonell F, Costache M V and Valenzuela S O 2018 Nat. Phys. 14 303 [22] Frank T, Högl P, Gmitra M, Kochan D and Fabian J 2018 Phys. Rev. Lett. 120 156402 [23] Högl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403 [24] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414 [25] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441 [26] Lazić P, Belashchenko K D and Žutić I 2016 Phys. Rev. B 93 241401 [27] Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603 [28] Leutenantsmeyer J C, Kaverzin A A, Wojtaszek M and van Wees B J 2017 2D Mater. 4 014001 [29] Mendes J B S, Alves Santos O, Meireles L M, Lacerda R G, Vilela-Leão L H, Machado F L A, Rodríguez-Suárez R L, Azevedo A and Rezende S M 2015 Phys. Rev. Lett. 115 226601 [30] Swartz A G, Odenthal P M, Hao Y, Ruoff R S and Kawakami R K 2012 ACS Nano 6 10063 [31] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711 [32] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406 [33] Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603 [34] Hallal A, Ibrahim F, Yang H, Roche S and Chshiev M 2017 2D Mater. 4 025074 [35] Dyrdal A and Barnaś J 2017 2D Mater. 4 034003 [36] Zollner K, Gmitra M and Fabian J 2018 New J. Phys. 20 073007 [37] Zhang J, Zhao B, Zhou T, Xue Y, Ma C and Yang Z 2018 Phys. Rev. B 97 085401 [38] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404 [39] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738 [40] Pei Q, Wang X C, Zou J J and Mi W B 2018 Front. Phys. 13 137105 [41] Zollner K and Fabian J 2022 Phys. Rev. B 106 035137 [42] Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R and Rouxel J 1981 Solid State Commun. 40 1067 [43] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 [44] Barkeshli M, Chung S B and Qi X L 2012 Phys. Rev. B 85 245107 [45] Hamada M, Minamitani E, Hirayama M and Murakami S 2018 Phys. Rev. Lett. 121 175301 [46] Cheng B, Schumann T, Wang Y, Zhang X, Barbalas D, Stemmer S and Armitage N P 2020 Nano Lett. 20 5991 [47] Ren Y, Xiao C, Saparov D and Niu Q 2021 Phys. Rev. Lett. 127 186403 [48] Baydin A, Hernandez F G G, Rodriguez-Vega M, Okazaki A K, Tay F, Noe G T, Katayama I, Takeda J, Nojiri H, Rappl P H O, Abramof E, Fiete G A and Kono J 2022 Phys. Rev. Lett. 128 075901 [49] Xiong G, Chen H, Ma D and Zhang L 2022 Phys. Rev. B 106 144302 [50] Spivak B Z and Andreev A V 2016 Phys. Rev. B 93 085107 [51] Sengupta S, Lhachemi M N Y and Garate I 2020 Phys. Rev. Lett. 125 146402 [52] Liu D and Shi J 2017 Phys. Rev. Lett. 119 075301 [53] Shan W Y 2022 Phys. Rev. B 105 L121302 [54] Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602 [55] Kochan D, Irmer S and Fabian J 2017 Phys. Rev. B 95 165415 [56] Shan W Y 2020 Phys. Rev. B 102 241301 [57] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412 [58] Mariani E and von Oppen F 2008 Phys. Rev. Lett. 100 076801 [59] Castro E V, Ochoa H, Katsnelson M I, Gorbachev R V, Elias D C, Novoselov K S, Geim A K and Guinea F 2010 Phys. Rev. Lett. 105 266601 [60] Mariani E and von Oppen F 2010 Phys. Rev. B 82 195403 [61] Amorim B and Guinea F 2013 Phys. Rev. B 88 115418 [62] Shan W Y 2023 Phys. Rev. Res. 5 L022038 [63] Tuegel T I and Hughes T L 2017 Phys. Rev. B 96 174524 [64] Truell R, Elbaum C and Chick B B 1969 Ultrasonic Methods in Solid State Physics (New York: Academic Press) p. 53 [65] Lüthi B 2004 Physical Acoustics in the Solid State 1st edn. (Berlin Heidelberg: Springer) p. 17 [66] Sonntag J, Reichardt S, Beschoten B and Stampfer C 2021 Nano Lett. 21 2898 [67] Kossacki P, Faugeras C, Kühne M, Orlita M, Mahmood A, Dujardin E, Nair R R, Geim A K and Potemski M 2012 Phys. Rev. B 86 205431 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|