Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070305    DOI: 10.1088/1674-1056/ac538d
GENERAL Prev   Next  

Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential

Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生)
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We present numerical results of a one-dimensional spin-orbit coupled Bose-Einstein condensate expanding in a speckle disorder potential by employing the Gross-Pitaevskii equation. Localization properties of a spin-orbit coupled Bose-Einstein condensate in zero-momentum phase, magnetic phase and stripe phase are studied. It is found that the localizing behavior in the zero-momentum phase is similar to the normal Bose-Einstein condensate. Moreover, in both magnetic phase and stripe phase, the localization length changes non-monotonically as the fitting interval increases. In magnetic phases, the Bose-Einstein condensate will experience spin relaxation in disorder potential.
Keywords:  Bose-Einstein condensates      Anderson localization      spin-orbit coupling  
Received:  18 October 2021      Revised:  27 January 2022      Accepted manuscript online:  10 February 2022
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  73.20.Fz (Weak or Anderson localization)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Y. S. Zhang thanks Professor Chuanwei Zhang for drawing our attention to the topic of Anderson localization of BECs. This work was supported by the National Natural Science Foundation of China (Grant No. 92065113) and the National Key R&D Program. The calculation on GPU was performed on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.
Corresponding Authors:  Yongsheng Zhang     E-mail:

Cite this article: 

Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生) Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential 2022 Chin. Phys. B 31 070305

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Mott N F 1949 Proc. Phys. Soc. London A 62 416
[3] Abrahams E, Anderson P W, Licciarello D C and Ramakrishana T V 1979 Phys. Rev. Lett. 42 673
[4] Izrailev F M and Makarov N M 2009 Phys. Rev. Lett. 102 203901
[5] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[6] Lee P A 1985 Rev. Mod. Phys. 57 287
[7] Billy J Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[8] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[9] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[10] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906
[11] Hikami S, Larkin A and Nagaoka Y 1980 Prog. Theor. Phys 63 707
[12] Kohmoto M and Tobe D 2008 Phys. Rev. B 77 134204
[13] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[14] Byczuk K, Hofstetter W and Vollhardt D 2005 Phys. Rev. Lett. 94 056404
[15] Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
[16] Liu S, Zhou X F, Guo G C and Zhang Y S 2016 Sci. Rep. 6 22623
[17] Sanchez-Palencia L, Clément D, Lugan P, Bouyer P, Shlyapnikov G V and Aspect A 2007 Phys. Rev. Lett. 98 210401
[18] Piraud M, Lugan P, Bouyer P, Aspect A and Sanchez-Palencia L 2011 Phys. Rev. A 83 031603
[19] Valdes J P R and Wellens T 2016 Phys. Rev. A 93 063634
[20] Donsa S, Hofstätter H, Koch O, Burgdörfer J and Březinová I 2017 Phys. Rev. A 96 043630
[21] Lin Y J, Jiménez-García K and Spielman I 2011 Nature 471 83
[22] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[23] Zhai H 2015 Rep. Prog. Phys. 78 026001
[24] Zhou L, Pu H and Zhang W 2013 Phys. Rev. A 87 023625
[25] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
[26] Oztas Z 2018 Phys. Lett. A 383 504
[27] Mardonov S, Modugno M and Sherman E Y 2015 Phys. Rev. Lett. 115 180402
[28] Orso G 2017 Phys. Rev. Lett. 118 105301
[29] Qu C, Pitaevskii L P and Stringari S 2017 New J. Phys. 19 085006
[30] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[31] Dresselhaus G 1955 Phys. Rev. 100 580
[32] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Fron. Phys. 11 118103
[33] Li Y, Pitaevskii P L and Stringari S 2012 Phys. Rev. Lett. 108 225301
[34] Clément D, Varón A F, Retter J A, Sanchez-Palencia L, Aspect A and Bouyer P 2006 New J. Phys. 8 165
[35] Auzinger W, Hofstätter H, Ketcheson D and Koch O 2017 BIT 57 55
[36] Dyakonov M and Perel V 1972 Sov. Phys. Solid State 13 3023
[37] Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M and Engels P 2017 Phys. Rev. Lett. 118 155301
[38] Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B 46 134007
[39] Zhu Q, Zhang C and Wu B 2012 Europhys. Lett. 100 50003
[40] Ozawa T, Pitaevskii L P and Stringari S 2013 Phys. Rev. A 87 063610
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[14] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!