|
|
Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential |
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生)† |
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We present numerical results of a one-dimensional spin-orbit coupled Bose-Einstein condensate expanding in a speckle disorder potential by employing the Gross-Pitaevskii equation. Localization properties of a spin-orbit coupled Bose-Einstein condensate in zero-momentum phase, magnetic phase and stripe phase are studied. It is found that the localizing behavior in the zero-momentum phase is similar to the normal Bose-Einstein condensate. Moreover, in both magnetic phase and stripe phase, the localization length changes non-monotonically as the fitting interval increases. In magnetic phases, the Bose-Einstein condensate will experience spin relaxation in disorder potential.
|
Received: 18 October 2021
Revised: 27 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
73.20.Fz
|
(Weak or Anderson localization)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Y. S. Zhang thanks Professor Chuanwei Zhang for drawing our attention to the topic of Anderson localization of BECs. This work was supported by the National Natural Science Foundation of China (Grant No. 92065113) and the National Key R&D Program. The calculation on GPU was performed on the supercomputing system in the Supercomputing Center of University of Science and Technology of China. |
Corresponding Authors:
Yongsheng Zhang
E-mail: yshzhang@ustc.edu.cn
|
Cite this article:
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生) Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential 2022 Chin. Phys. B 31 070305
|
[1] Anderson P W 1958 Phys. Rev. 109 1492 [2] Mott N F 1949 Proc. Phys. Soc. London A 62 416 [3] Abrahams E, Anderson P W, Licciarello D C and Ramakrishana T V 1979 Phys. Rev. Lett. 42 673 [4] Izrailev F M and Makarov N M 2009 Phys. Rev. Lett. 102 203901 [5] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469 [6] Lee P A 1985 Rev. Mod. Phys. 57 287 [7] Billy J Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891 [8] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895 [9] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52 [10] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906 [11] Hikami S, Larkin A and Nagaoka Y 1980 Prog. Theor. Phys 63 707 [12] Kohmoto M and Tobe D 2008 Phys. Rev. B 77 134204 [13] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [14] Byczuk K, Hofstetter W and Vollhardt D 2005 Phys. Rev. Lett. 94 056404 [15] Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403 [16] Liu S, Zhou X F, Guo G C and Zhang Y S 2016 Sci. Rep. 6 22623 [17] Sanchez-Palencia L, Clément D, Lugan P, Bouyer P, Shlyapnikov G V and Aspect A 2007 Phys. Rev. Lett. 98 210401 [18] Piraud M, Lugan P, Bouyer P, Aspect A and Sanchez-Palencia L 2011 Phys. Rev. A 83 031603 [19] Valdes J P R and Wellens T 2016 Phys. Rev. A 93 063634 [20] Donsa S, Hofstätter H, Koch O, Burgdörfer J and Březinová I 2017 Phys. Rev. A 96 043630 [21] Lin Y J, Jiménez-García K and Spielman I 2011 Nature 471 83 [22] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 [23] Zhai H 2015 Rep. Prog. Phys. 78 026001 [24] Zhou L, Pu H and Zhang W 2013 Phys. Rev. A 87 023625 [25] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602 [26] Oztas Z 2018 Phys. Lett. A 383 504 [27] Mardonov S, Modugno M and Sherman E Y 2015 Phys. Rev. Lett. 115 180402 [28] Orso G 2017 Phys. Rev. Lett. 118 105301 [29] Qu C, Pitaevskii L P and Stringari S 2017 New J. Phys. 19 085006 [30] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039 [31] Dresselhaus G 1955 Phys. Rev. 100 580 [32] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Fron. Phys. 11 118103 [33] Li Y, Pitaevskii P L and Stringari S 2012 Phys. Rev. Lett. 108 225301 [34] Clément D, Varón A F, Retter J A, Sanchez-Palencia L, Aspect A and Bouyer P 2006 New J. Phys. 8 165 [35] Auzinger W, Hofstätter H, Ketcheson D and Koch O 2017 BIT 57 55 [36] Dyakonov M and Perel V 1972 Sov. Phys. Solid State 13 3023 [37] Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M and Engels P 2017 Phys. Rev. Lett. 118 155301 [38] Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B 46 134007 [39] Zhu Q, Zhang C and Wu B 2012 Europhys. Lett. 100 50003 [40] Ozawa T, Pitaevskii L P and Stringari S 2013 Phys. Rev. A 87 063610 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|