Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
SPECIAL TOPIC—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals |
Wansong Zhu(朱万松)1, Zhenfa Zheng(郑镇法)1, Qijing Zheng(郑奇靖)1,†, and Jin Zhao(赵瑾)1,2,‡ |
1 Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA |
|
|
Abstract Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device. In this work, by the ab initio nonadiabatic molecular dynamics simulation, we have studied the spin dynamics induced by spin—orbit coupling (SOC) in Co and Fe using both spin-diabatic and spin-adiabatic representations. In Co system, it is found that the Fermi surface (EF) is predominantly contributed by the spin-minority states. The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the EF, and the spin-minority electrons tend to relax to the EF with the same spin through the electron—phonon coupling (EPC). The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within 100 fs. By contrast, in Fe system, the EF is dominated by the spin-majority states. In this case, the SOC induced spin flip occurs for the photo-excited spin-minority electrons, which leads to a magnetization enhancement. If we move the EF of Fe to higher energy by 0.6 eV, the EF will be contributed by the spin-minority states and the demagnetization will be observed again. This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
|
Received: 05 August 2023
Revised: 08 September 2023
Accepted manuscript online: 13 September 2023
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
67.30.hj
|
(Spin dynamics)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
Fund: J. Z. acknowledges the support of Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0450101), the National Natural Science Foundation of China (Grant Nos. 12125408 and 11974322), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0105). Q. Z. acknowledges the support of the National Natural Science Foundation of China (Grant No. 12174363). Calculations were performed at Hefei Advanced Computing Center, ORISE supercomputing center and Supercomputing Center at USTC. |
Corresponding Authors:
Qijing Zheng, Jin Zhao
E-mail: zqj@ustc.edu.cn;zhaojin@ustc.edu.cn
|
Cite this article:
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾) Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals 2024 Chin. Phys. B 33 016301
|
[1] Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G and Hübner W 2019 Phys. Rev. B 99 134430 [2] Vedyaev A, Ryzhanova N, Strelkov N, Lobachev A and Dieny B 2020 Phys. Rev. B 101 014401 [3] Liu B, Liu S S, Yang L, Chen Z D, Zhang E Z, Li Z H, Wu J, Ruan X Z, Xiu F X, Liu W Q, He L, Zhang R and Xu Y B 2020 Phys. Rev. Lett. 125 267205 [4] Kimel A V and Li M 2019 Nat. Rev. Mater. 4 189 [5] Puebla J, Kim J, Kondou K and Otani Y 2020 Commun. Mater. 1 24 [6] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 [7] Cinchetti M, Sánchez Albaneda M, Hoffmann D, Roth T, Wüstenberg J P, Krauss M, Andreyev O, Schneider H C, Bauer M and Aeschlimann M 2006 Phys. Rev. Lett. 97 177201 [8] Carpene E, Mancini E, Dallera C, Brenna M, Puppin E and De Silvestri S 2008 Phys. Rev. B 78 174422 [9] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M and Oppeneer P M 2012 Nat. Commun. 3 1037 [10] Hohlfeld J, Matthias E, Knorren R and Bennemann K H 1997 Phys. Rev. Lett. 78 4861 [11] Koopmans B, Ruigrok J J M, Longa F Dalla and de Jonge W J M 2005 Phys. Rev. Lett. 95 267207 [12] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M and Aeschlimann M 2009 Nat. Mater. 9 259 [13] Fähnle M, Seib J and Illg C 2010 Phys. Rev. B 82 144405 [14] Carva K, Battiato M and Oppeneer P M 2011 Phys. Rev. Lett. 107 207201 [15] Carpene E, Mancini E, Dallera C, Brenna M, Puppin E and Silvestri S De 2008 Phys. Rev. B 78 174422 [16] Schmidt A B, Pickel M, Donath M, Buczek P, Ernst A, Zhukov V P, Echenique P M, Sandratskii L M, Chulkov E V and Weinelt M 2010 Phys. Rev. Lett. 105 197401 [17] Krauş M, Roth T, Alebrand S, Steil D, Cinchetti M, Aeschlimann M and Schneider H C 2009 Phys. Rev. B 80 180407 [18] Steil D, Alebrand S, Roth T, Krauş M, Kubota T, Oogane M, Ando Y, Schneider H C, Aeschlimann M and Cinchetti M 2010 Phys. Rev. Lett. 105 217202 [19] Zhang G P and Hübner W 2000 Phys. Rev. Lett. 85 3025 [20] Chen Z and Wang L W 2019 Sci. Adv. 5 eaau8000 [21] Acharya S R, Turkowski V, Zhang G P and Rahman T S 2020 Phys. Rev. Lett. 125 017202 [22] Zhang G P, Hübner W, Lefkidis G, Bai Y and George T F 2009 Nat. Phys. 5 499 [23] Battiato M, Carva K and Oppeneer P M 2010 Phys. Rev. Lett. 105 027203 [24] Töws W and Pastor G M 2015 Phys. Rev. Lett. 115 217204 [25] Manchon A, Li Q, Xu L and Zhang S 2012 Phys. Rev. B 85 064408 [26] Li W, Zhou L J, Prezhdo O V and Akimov A V 2018 ACS Energy Lett. 3 2159 [27] Liu X Y, Yang J J, Chen W K, Akimov A V, Fang W H and Cui G 2021 J. Phys. Chem. Lett. 12 1131 [28] Zheng Z F, Zheng Q J and Zhao J 2022 Phys. Rev. B 105 085142 [29] Tully J C 1990 J. Chem. Phys. 93 1061 [30] Craig C F, Duncan W R and Prezhdo O V 2005 Phys. Rev. Lett. 95 163001 [31] Akimov A V and Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959 [32] Akimov A V and Prezhdo O V 2014 J. Chem. Theory Comput. 10 789 [33] Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X and Zhao J 2019 WIREs Comput. Mol. Sci. 9 e1411 [34] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [36] Blöchl P E 1994 Phys. Rev. B 50 17953 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Lu H R and Long R 2023 J. Phys. Chem. Lett. 14 5403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|