Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016301    DOI: 10.1088/1674-1056/acf91d
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals

Wansong Zhu(朱万松)1, Zhenfa Zheng(郑镇法)1, Qijing Zheng(郑奇靖)1,†, and Jin Zhao(赵瑾)1,2,‡
1 Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Abstract  Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device. In this work, by the ab initio nonadiabatic molecular dynamics simulation, we have studied the spin dynamics induced by spin—orbit coupling (SOC) in Co and Fe using both spin-diabatic and spin-adiabatic representations. In Co system, it is found that the Fermi surface (EF) is predominantly contributed by the spin-minority states. The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the EF, and the spin-minority electrons tend to relax to the EF with the same spin through the electron—phonon coupling (EPC). The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within 100 fs. By contrast, in Fe system, the EF is dominated by the spin-majority states. In this case, the SOC induced spin flip occurs for the photo-excited spin-minority electrons, which leads to a magnetization enhancement. If we move the EF of Fe to higher energy by 0.6 eV, the EF will be contributed by the spin-minority states and the demagnetization will be observed again. This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
Keywords:  nonadiabatic molecular dynamics      spin dynamics      spin—orbit coupling      ferromagnetic metal  
Received:  05 August 2023      Revised:  08 September 2023      Accepted manuscript online:  13 September 2023
PACS:  63.20.dk (First-principles theory)  
  75.70.Tj (Spin-orbit effects)  
  67.30.hj (Spin dynamics)  
  63.20.kd (Phonon-electron interactions)  
Fund: J. Z. acknowledges the support of Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0450101), the National Natural Science Foundation of China (Grant Nos. 12125408 and 11974322), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0105). Q. Z. acknowledges the support of the National Natural Science Foundation of China (Grant No. 12174363). Calculations were performed at Hefei Advanced Computing Center, ORISE supercomputing center and Supercomputing Center at USTC.
Corresponding Authors:  Qijing Zheng, Jin Zhao     E-mail:  zqj@ustc.edu.cn;zhaojin@ustc.edu.cn

Cite this article: 

Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾) Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals 2024 Chin. Phys. B 33 016301

[1] Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G and Hübner W 2019 Phys. Rev. B 99 134430
[2] Vedyaev A, Ryzhanova N, Strelkov N, Lobachev A and Dieny B 2020 Phys. Rev. B 101 014401
[3] Liu B, Liu S S, Yang L, Chen Z D, Zhang E Z, Li Z H, Wu J, Ruan X Z, Xiu F X, Liu W Q, He L, Zhang R and Xu Y B 2020 Phys. Rev. Lett. 125 267205
[4] Kimel A V and Li M 2019 Nat. Rev. Mater. 4 189
[5] Puebla J, Kim J, Kondou K and Otani Y 2020 Commun. Mater. 1 24
[6] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250
[7] Cinchetti M, Sánchez Albaneda M, Hoffmann D, Roth T, Wüstenberg J P, Krauss M, Andreyev O, Schneider H C, Bauer M and Aeschlimann M 2006 Phys. Rev. Lett. 97 177201
[8] Carpene E, Mancini E, Dallera C, Brenna M, Puppin E and De Silvestri S 2008 Phys. Rev. B 78 174422
[9] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M and Oppeneer P M 2012 Nat. Commun. 3 1037
[10] Hohlfeld J, Matthias E, Knorren R and Bennemann K H 1997 Phys. Rev. Lett. 78 4861
[11] Koopmans B, Ruigrok J J M, Longa F Dalla and de Jonge W J M 2005 Phys. Rev. Lett. 95 267207
[12] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M and Aeschlimann M 2009 Nat. Mater. 9 259
[13] Fähnle M, Seib J and Illg C 2010 Phys. Rev. B 82 144405
[14] Carva K, Battiato M and Oppeneer P M 2011 Phys. Rev. Lett. 107 207201
[15] Carpene E, Mancini E, Dallera C, Brenna M, Puppin E and Silvestri S De 2008 Phys. Rev. B 78 174422
[16] Schmidt A B, Pickel M, Donath M, Buczek P, Ernst A, Zhukov V P, Echenique P M, Sandratskii L M, Chulkov E V and Weinelt M 2010 Phys. Rev. Lett. 105 197401
[17] Krauş M, Roth T, Alebrand S, Steil D, Cinchetti M, Aeschlimann M and Schneider H C 2009 Phys. Rev. B 80 180407
[18] Steil D, Alebrand S, Roth T, Krauş M, Kubota T, Oogane M, Ando Y, Schneider H C, Aeschlimann M and Cinchetti M 2010 Phys. Rev. Lett. 105 217202
[19] Zhang G P and Hübner W 2000 Phys. Rev. Lett. 85 3025
[20] Chen Z and Wang L W 2019 Sci. Adv. 5 eaau8000
[21] Acharya S R, Turkowski V, Zhang G P and Rahman T S 2020 Phys. Rev. Lett. 125 017202
[22] Zhang G P, Hübner W, Lefkidis G, Bai Y and George T F 2009 Nat. Phys. 5 499
[23] Battiato M, Carva K and Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
[24] Töws W and Pastor G M 2015 Phys. Rev. Lett. 115 217204
[25] Manchon A, Li Q, Xu L and Zhang S 2012 Phys. Rev. B 85 064408
[26] Li W, Zhou L J, Prezhdo O V and Akimov A V 2018 ACS Energy Lett. 3 2159
[27] Liu X Y, Yang J J, Chen W K, Akimov A V, Fang W H and Cui G 2021 J. Phys. Chem. Lett. 12 1131
[28] Zheng Z F, Zheng Q J and Zhao J 2022 Phys. Rev. B 105 085142
[29] Tully J C 1990 J. Chem. Phys. 93 1061
[30] Craig C F, Duncan W R and Prezhdo O V 2005 Phys. Rev. Lett. 95 163001
[31] Akimov A V and Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959
[32] Akimov A V and Prezhdo O V 2014 J. Chem. Theory Comput. 10 789
[33] Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X and Zhao J 2019 WIREs Comput. Mol. Sci. 9 e1411
[34] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Lu H R and Long R 2023 J. Phys. Chem. Lett. 14 5403
[1] Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis. Chin. Phys. B, 2024, 33(3): 037802.
[2] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[3] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[6] Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice
Shaobing Zhu(朱少兵), Jun Qian(钱军), Yuzhu Wang(王育竹). Chin. Phys. B, 2017, 26(4): 046702.
[7] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[8] Theoretical investigations of half-metallic ferromagnetism in new Half—Heusler YCrSb and YMnSb alloys using first-principle calculations
M Atif Sattar, Muhammad Rashid, M Raza Hashmi, S A Ahmad, Muhammad Imran, Fayyaz Hussain. Chin. Phys. B, 2016, 25(10): 107402.
[9] Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures
Cheng Zhao-Hua (成昭华), He Wei (何为), Zhang Xiang-Qun (张向群), Sun Da-Li (孙达力), Du Hai-Feng (杜海峰), Wu Qiong (吴琼), Ye Jun (叶军), Fang Ya-Peng (房亚鹏), Liu Hao-Liang (刘郝亮). Chin. Phys. B, 2015, 24(7): 077505.
[10] Coherent spin dynamics in spin-imbalanced ferromagnetic spinor condensates
Qiu Hai-Bo (邱海波), Wu Li-Wei (武丽伟). Chin. Phys. B, 2015, 24(1): 010304.
No Suggested Reading articles found!