Benchmarking calculations of excitation energies and transition properties with spectroscopic accuracy of highly charged ions used for the fusion plasma and astrophysical plasma
Chunyu Zhang(张春雨)1,2, Kai Wang(王凯)3,4,†, Ran Si(司然)1,‡, Jinqing Li(李金晴)1, Changxian Song(宋昌仙)1, Sijie Wu(吴思捷)1, Bishuang Yan(严碧霜)1, and Chongyang Chen(陈重阳)1,§
1 Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-beam Application, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China; 2 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK; 3 Department of Physics and Anhui Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China; 4 Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with that are generally of astrophysical interest, and the other one is about the highly charged krypton (Z=36) and tungsten (Z=74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac-Hartree-Fock (MCDHF) and the relativistic many-body perturbation theory (RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3 configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
Fund: We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 12074081 and 12104095). Many works reviewed here are accomplished in close collaboration with other groups, such as members of the CompAS group, and M. F. Gu (author of the FAC code), etc.
Corresponding Authors:
Kai Wang, Ran Si, Chongyang Chen
E-mail: wang_kai10@fudan.edu.cn;rsi@fudan.edu.cn;chychen@fudan.edu.cn
Cite this article:
Chunyu Zhang(张春雨), Kai Wang(王凯), Ran Si(司然), Jinqing Li(李金晴), Changxian Song(宋昌仙), Sijie Wu(吴思捷), Bishuang Yan(严碧霜), and Chongyang Chen(陈重阳) Benchmarking calculations of excitation energies and transition properties with spectroscopic accuracy of highly charged ions used for the fusion plasma and astrophysical plasma 2023 Chin. Phys. B 32 113102
[1] Del Zanna G and Mason H E 2018 Living Rev. Sol. Phys.15 5 [2] Hawryluk R, Campbell D, Janeschitz G, et al. 2009 Nucl. Fusion49 065012 [3] Yao D, Luo G, Du S, Cao L, Zhou Z, Xu T, Ji X, Liu C, Liang C, Li Q,Wang W, Zhao S, Xu Y, Li L,Wang Z, Qi X X M, Wang S and Li J 2015 Fusion Eng. Des.98-99 1692 [4] Zhang L, Morita S, Wu Z, Xu Z, Yang X, Cheng Y, Zang Q, Liu H, Liu Y, Zhang H, Ohishi T, Chen Y, Xu L, Wu C, Duan Y, Gao W, Huang J, Gong X and Hu L 2019 Nucl. Instrum. Methods Phys. Res. Sect. A916 169 [5] Froese Fischer C, Gaigalas G and Jönsson P 2017 Atoms5 7 [6] Safronova M S, Safronova U I, Porsev S G, Kozlov M G and Ralchenko Y 2018 Phys. Rev. A97 012502 [7] Beiersdorfer P, Clementson J, Dunn J, Gu M F, Morris K, Podpaly Y, Wang E, Bitter M, Feder R, Hill K W, Johnson D and Barnsley R 2010 J. Phys. B:At., Mol. Opt. Phys.43 144008 [8] Beiersdorfer P, Clementson J and Safronova U I 2015 Atoms3 260 [9] Rzadkiewicz J, Yang Y, Koziol K, O'Mullane M G, Patel A, Xiao J, Yao K, Shen Y, Lu D, Hutton R, Zou Y and Contributors J 2018 Phys. Rev. A97 052501 [10] Gormezano C, Sips A, Luce T, et al. 2007 Nucl. Fusion47 S285 [11] Donné A, Costley A, Barnsley R, et al. 2007 Nucl. Fusion47 S337 [12] Clementson J, Beiersdorfer P and Gu M F 2010 Phys. Rev. A81 012505 [13] Wyart J F and Group T 1985 Phys. Scr.31 539 [14] Denne B, Hinnov E, Ramette J and Saoutic B 1989 Phys. Rev. A40 1488 [15] Martinson I and Jupén C 2003 Phys. Scr.68 C123 [16] Myrnäs R, Jupén C, Miecznik G, Martinson I and Denne-Hinnov B 1994 Phys. Scr.49 429 [17] Hinnov E, TFTR Operating Team, Denne B and JET Operating Team 1989 Phys. Rev. A40 4357 [18] Barnsley R, O'Mullane M, Ingesson L C and Malaquias A 2004 Rev. Sci. Instrum.75 3743 [19] Donné A J H, Costley A E, Barnsley R, et al. 2007 Nucl. Fusion.47 S337 [20] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York, NY:Springer Sci. +Bus. Media, LLC) [21] Froese Fischer C, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B:At., Mol. Opt. Phys.49 182004 [22] Jönsson P, Gaigalas G, Bieron J, Froese Fischer C and Grant I P 2013 Comput. Phys. Commun.184 2197 [23] Lindgren I 1974 J. Phys. B:At. Mol. Opt. Phys.7 2441 [24] Safronova M S, Johnson W R and Safronova U I 1996 Phys. Rev. A53 4036 [25] Vilkas M J, Ishikawa Y and Koc K 1999 Phys. Rev. A60 2808 [26] Gu M F 2008 Can. J. Phys.86 675 [27] Gu M F 2005 At. Data Nucl. Data Tables89 267 [28] Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J.641 1227 [29] Zhang C Y, Wang K, Godefroid M, Jönsson P, Si R and Chen C Y 2020 Phys. Rev. A101 032509 [30] Zhang C Y, Wang K, Si R, Godefroid M, Jönsson P, Xiao J, Gu M F and Chen C Y 2021 J. Quant. Spectrosc. Radiat. Transfer269 107650 [31] Shabaev V M, Tupitsyn I I and Yerokhin V A 2013 Phys. Rev. A88 012513 [32] Shabaev V M, Tupitsyn I I and Yerokhin V A 2015 Comput. Phys. Commun.189 175 [33] Li M C, Si R, Brage T, Hutton R and Zou Y M 2018 Phys. Rev. A98 020502 [34] Si R, Guo X L, Brage T, Chen C Y, Hutton R and Froese Fischer C 2018 Phys. Rev. A98 12504 [35] Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å and Froese Fischer C 1995 Phys. Rev. E52 4499 [36] Grant I P 1974 J. Phys. B:At., Mol. Opt. Phys.7 1458 [37] Chen C Y, Wang K, Huang M, Wang Y S and Zou Y M 2010 J. Quant. Spectrosc. Radiat. Transfer111 843 [38] Li S, Yan J, Li C Y, Si R, Guo X L, Huang M, Chen C Y and Zou Y M 2015 Astron. & Astrophys. 583 A82 [39] Si R, Guo X L, Wang K, Li S, Yan J, Chen C Y, Brage T and Zou Y M 2016 Astron. & Astrophys. 592 A141 [40] Si R, Li S, Wang K, Guo X L, Chen Z B, Yan J, Chen C Y, Brage T and Zou Y M 2017 Astron. & Astrophys. 600 A85 [41] Wang K, Chen Z B, Zhang C Y, Si R, Jönsson P, Hartman H, Gu M F, Chen C Y and Yan J 2018 Astrophys. J. Supp. Ser.234 40 [42] Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S, Hutton R, Zou Y M, Zeng J L, Chen C Y and Yan J 2015 Astrophys. J. Supp. Ser.218 16 [43] Chen Z B and Wang K 2019 J. Quant. Spectrosc. Radiat. Transf.234 90 [44] Chen Z B, Wang K and Guo X L 2018 J. Quant. Spectrosc. Radiat. Transf.220 28 [45] Chen Z B and Wang K 2018 J. Quant. Spectrosc. Radiat. Transf.221 31 [46] Wang K, Song C X, Jönsson P, Ekman J, Godefroid M, Zhang C Y, Si R, Zhao X H, Chen C Y and Yan J 2018 Astrophys. J. Supp. Ser.864 127 [47] Si R, Zhang C Y, Cheng Z Y, Wang K, Jönsson P, Yao K, Gu M F and Chen C Y 2018 Astrophys. J. Supp. Ser.239 3 [48] Li Y T, Si R, Li J Q, Zhang C Y, Yao K, Wang K, Gu M F and Chen C Y 2020 At. Data Nucl. Data Tables133-134 101339 [49] Li J Q, Zhang C Y, Zanna G D, Jönsson P, Godefroid M, Gaigalas G, Rynkun P, Radžiūtė L, Wang K, Si R and Chen C Y 2022 Astrophys. J. Supp. Ser.260 50 [50] Wang K, Li D F, Liu H T, Han X Y, Duan B, Li C Y, Li J G, Guo X L, Chen C Y and Yan J 2014 Astrophys. J. Supp. Ser.215 26 [51] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Supp. Ser.223 3 [52] Wang K, Zhang C Y, Jönsson P, Si R, Zhao X H, Chen Z B, Guo X L, Chen C Y and Yan J 2018 J. Quant. Spectrosc. Radiat. Transf.208 134 [53] Wang K, Wang Y, Zhang C Y, Zhao X H, Chen Z B, Si R, Chen C Y and Yan J 2018 J. Quant. Spectrosc. Radiat. Transfer220 5 [54] Wang K, Li S, Jönsson P, Fu N, Dang W, Guo X L, Chen C Y, Yan J, Chen Z B and Si R 2017 J. Quant. Spectrosc. Radiat. Transf.187 375 [55] Wang K, Chen Z B, Zhao X H, Chen C Y and Yan J 2019 J. Quant. Spectrosc. Radiat. Transf.237 106640 [56] Song C X, Zhang C Y, Wang K, Si R, Godefroid M, Jönsson P, Dang W, Zhao X H, Yan J and Chen C Y 2021 At. Data Nucl. Data Tables138 101377 [57] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Supp. Ser.229 37 [58] Chen Z B, Guo X L and Wang K 2018 J. Quant. Spectrosc. Radiat. Transf.206 213 [59] Wang K, Jönsson P, Ekman J, Si R, Chen Z B, Li Y, Chen C Y and Yan J 2017 J. Quant. Spectrosc. Radiat. Transf.194 108 [60] Wang K, Zheng W, Zhao X H, Chen Z B, Chen C Y and Yan J 2019 J. Quant. Spectrosc. Radiat. Transf.236 106586 [61] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Supp. Ser.227 16 [62] Li J Q, Zhang C Y, Si R, Wang K and Chen C Y 2019 At. Data Nucl. Data Tables126 158 [63] Zhang C Y, Si R, Yao K, Gu M F, Wang K and Chen C Y 2018 J. Quant. Spectrosc. Radiat. Transf.206 180 [64] Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Supp. Ser.226 14 [65] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2018 NIST Atomic Spectra Database (ver. 5.5.3),[Online]. Available:https://physics.nist.gov/asd[2018, March 27]. National Institute of Standards and Technology, Gaithersburg, MD. [66] Fan Q, Jiang G, Cao L, Wang W and Du S 2013 Eur. Phys. J. D67 255 [67] Bhatia A, Landi E and Mason H 2003 At. Data Nucl. Data Tables83 71 [68] Aggarwal S, Verma N, Singh A, Singh N, Sharma R and Mohan M 2014 Can. J. Phys.92 1285 [69] Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys.162 233 [70] Hawryluk R, Campbell D, Janeschitz G, et al. 2007 Sol. Phys.243 19 [71] Watanabe T, Hara H, Yamamoto N, Kato D, Sakaue H A, Murakami I, Kato T, Nakamura N and Young P R 2009 Astrophys. J692 1294 [72] Young P R, Watanabe T, Hara H and Mariska J T 2009 Astron. & Astrophys.495 587 [73] Del Zanna G 2011 Astron. & Astrophys. 533 A12 [74] Yu X, Zanna G D, Stenning D C, Cisewski-Kehe J, Kashyap V L, Stein N, van Dyk D A, Warren H P and Weber M A 2018 Astrophys. J866 146 [75] Fawcett B C, Cowan R D and Hayes R W 1972 J. Phys. B:At., Mol. Opt. Phys.5 2143 [76] Fawcett B C, Cowan R D, Kononov E Y and Hayes R W 1972 J. Phys. B:At., Mol. Opt. Phys.5 1255 [77] Behring W E, Cohen L and Feldman U 1972 Astrophys. J175 493 [78] Woods T, Eparvier F, Hock R, Jones A, Woodraska D, Judge D, Didkovsky L, Lean J, Mariska J, Warren H, McMullin D, Chamberlin P, Berthiaume G, Bailey S, Fuller-Rowell T, Sojka J, Tobiska W and Viereck R 2012 Sol. Phys.275 115 [79] Woods T, Eparvier F, Hock R, Jones A, Woodraska D, Judge D, Didkovsky L, Lean J, Mariska J, Warren H, McMullin D, Chamberlin P, Berthiaume G, Bailey S, Fuller-Rowell T, Sojka J, Tobiska W and Viereck R 2012 Sol. Phys.275 115 [80] Zhang X H, Zanna G D, Wang K, Rynkun P, Jönsson P, Godefroid M, Gaigalas G, Radžiūtė L, Ma L H, Si R, Xiao J, Chen Z B, Yan J, Wu Y and Chen C Y 2021 Astrophys. J. Supp. Ser.257 56 [81] Song C X, Wang K, Del Zanna G, Jonsson P, Si R, Godefroid M, Gaigalas G, Radziute L, Rynkun P, Zhao X H, Yan J and Chen C Y 2020 Astrophys. J. Supp. Ser.247 70 [82] Wang K, Zhang X H, Zhang C Y, Dang W, Zhao X H, Chen Z B, Si R, Chen C Y and Yan J 2021 J. Quant. Spectrosc. Radiat. Transf.261 107512 [83] Wang K, Song C X, Jönsson P, Del Zanna G, Schiffmann S, Godefroid M, Gaigalas G, Zhao X H, Si R, Chen C Y and Yan J 2018 Astrophys. J. Suppl. Ser.239 30 [84] Wang K, Jönsson P, Del Zanna G, Godefroid M, Chen Z B, Chen C Y and Yan J 2020 Astrophys. J. Suppl. Ser.246 1 [85] Wang K, Jönsson P, Gaigalas G, Radžiūtė L, Rynkun P, Del Zanna G and Chen C Y 2018 Astrophys. J. Supp. Ser.235 27 [86] Del Zanna G 2012 Astron. & Astrophys 546 A97 [87] Del Zanna G and Storey P J 2012 Astron. & Astrophys. 543 A144 [88] Dufton P 1977 Comput. Phys. Commun.13 25 [89] Malinovsky L and Heroux M 1973 Astrophys. J181 1009 [90] Manson J E 1972 Sol. Phys.27 107 [91] Del Zanna G 2012 Astron. & Astrophys. 537 A38 [92] Behring W E, Cohen L, Doschek G A and Feldman U 1976 Astrophys. J203 521 [93] Thomas R J and Neupert W M 1994 Astrophys. J. Supp. Ser.91 461 [94] Kramida A 2013 Fusion Sci. Technol.63 313 [95] Kramida A 2014 Astrophys. J. Supp. Ser.212 11 [96] Zhang C Y, Li J Q, Wang K, Si R, Godefroid M, Jönsson P, Xiao J, Gu M F and Chen C Y 2022 Phys. Rev. A105 022817 [97] Guo X L, Huang M, Yan J, Li S, Wang K, Si R and Chen C Y 2016 Chin. Phys. B25 013101 [98] Guo X L, Li M C, Zhang C Y, Wang K, Li S, Chen Z B, Liu Y M, Zhang H J, Hutton R and Chen C Y 2018 J. Quant. Spectrosc. Radiat. Transf.210 204 [99] Wang K, Chen Z B, Chen C Y, Yan J, Dang W, Zhao X H and Yang X 2017 At. Data Nucl. Data Tables117 174 [100] Wang K, Yang X, Chen Z B, Si R, Chen C Y, Yan J, Zhao X H and Dang W 2017 At. Data Nucl. Data Tables117 1 [101] Guo X L, Grumer J, Brage T, Si R, Chen C, Jönsson P, Wang K, Yan J, Hutton R and Zou Y M 2016 J. Phys. B:At., Mol. Opt. Phys.49 135003 [102] Aggarwal K M and Keenan F P 2014 At. Data Nucl. Data Tables100 1603 [103] Aggarwal K M and Keenan F P 2016 At. Data Nucl. Data Tables111-112 187 [104] Xu M, Yan A, Wu S, Hu F and Li X 2017 Can. J. Phys.95 283 [105] Mohan M, Aggarwal S and Singh N 2014 Can. J. Phys.92 177 [106] Chen M H and Cheng K T 2011 Phys. Rev. A84 012513 [107] Quinet P 2011 J. Phys. B:At. Mol. Opt. Phys44 195007 [108] Safronova U I, Johnson W R, Kato D and Ohtani S 2001 Phys. Rev. A63 032518 [109] Safronova U I and Safronova A S 2010 J. Phys. B:At., Mol. Opt. Phys.43 074026 [110] Ding X B, Sun R, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2017 J. Phys. B:At., Mol. Opt. Phys.50 045004 [111] Ding X B, Sun R, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2018 At. Data Nucl. Data Tables119 354 [112] Ding X B, Yang J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2018 J. Quant. Spectrosc. Radiat. Transfer204 7 [113] Froese Fischer C 2014 Atoms2 1 [114] Lennartsson T, Clementson J and Beiersdorfer P 2013 Phys. Rev. A87 062505 [115] Welton T A 1948 Phys. Rev.74 1157 [116] Lowe J A, Chantler C T and Grant I P 2013 Radiat. Phys. Chem.85 118 [117] Mohr P J and Kim Y K 1992 Phys. Rev. A45 2727 [118] Le Bigot E O, Indelicato P and Mohr P J 2001 Phys. Rev. A64 052508 [119] Mohr P J and Soff G 1993 Phys. Rev. Lett.70 158 [120] Beier T, Mohr P J, Persson H and Soff G 1998 Phys. Rev. A58 954 [121] Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U and Holland G E 2008 J. Phys. B:At. Mol. Opt. Phys.41 021003 [122] Clementson J and Beiersdorfer P 2010 Phys. Rev. A81 052509 [123] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun.55 425 [124] Ekman J, Jönsson P, Radžiūtė L, Gaigalas G, Del Zanna G and Grant I P 2018 At. Data Nucl. Data Tables120 152 [125] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8),[Online]. Available:https://physics.nist.gov/asd[2021, January 21]. National Institute of Standards and Technology, Gaithersburg, MD. [126] Kramida A 2011 Can. J. Phys.89 551 [127] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley, CA:Univ. California Press) [128] Li Y T, Li J Q, Song C X, Zhang C Y, Si R, Wang K, Godefroid M, Gaigalas G, Jönsson P and Chen C Y 2023 Atoms11 12 [129] Li Y T, Wang K, Si R, Godefroid M, Gaigalas G, Chen C Y and Jönsson P 2023 Comput. Phys. Commun.283 108562
Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm Nadir Khan, Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Shu-Xing Wang(汪书兴), Han-Bing Wang(汪寒冰), Wan-Lu Ma(马万路), Xiao-Long Zhu(朱小龙), Dong-Mei Zhao(赵冬梅), Li-Jun Mao(冒立军), Jie Li(李杰), Xiao-Ming Ma(马晓明), Mei-Tang Tang(汤梅堂), Da-Yu Yin(殷达钰), Wei-Qing Yang(杨维青), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Lin-Fan Zhu(朱林繁), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(3): 033401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.