Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107306    DOI: 10.1088/1674-1056/acc809
Special Issue: SPECIAL TOPIC — Valleytronics
TOPICIAL REVIEW—Valleytronics Prev   Next  

Perspectives of spin-valley locking devices

Lingling Tao(陶玲玲)
School of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Valleytronics is an emerging field of research which utilizes the valley degree of freedom to encode information. However, it is technically nontrivial to produce a stable valley polarization and to achieve efficient control and manipulation of valleys. Spin-valley locking refers to the coupling between spin and valley degrees of freedom in the materials with large spin-orbit coupling (SOC) and enables the manipulation of valleys indirectly through controlling spins. Here, we review the recent advances in spin-valley locking physics and outline possible device implications. In particular, we focus on the spin-valley locking induced by SOC and external electric field in certain two-dimensional materials with inversion symmetry and demonstrate the intriguing switchable valley-spin polarization, which can be utilized to design the promising electronic devices, namely, valley-spin valves and logic gates.
Keywords:  spin-valley locking      spintronics      valleytronics      spin-orbit coupling  
Received:  16 February 2023      Revised:  16 March 2023      Accepted manuscript online:  28 March 2023
PACS:  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. FRFCU5710053421) and the National Natural Science Foundation of China (Grant No. 12274102).
Corresponding Authors:  Lingling Tao     E-mail:  lltao@hit.edu.cn

Cite this article: 

Lingling Tao(陶玲玲) Perspectives of spin-valley locking devices 2023 Chin. Phys. B 32 107306

[1] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[2] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[3] Sun Z H, Guan H M, Fu L, Shen B and Tang N 2021 Acta Phys. Sin. 70 027302 (in Chinese)
[4] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[7] Manzeli S, Ovchinnikov S, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[8] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[9] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechol. 7 490
[10] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[11] Yu Z, Xu F and Wang J 2015 Carbon 99 451
[12] Yu H, Cui X, Xu X and Yao W 2015 Natl. Sci. Rev. 2 57
[13] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428
[14] Xu F, Yu Z, Ren Y, Wang B, Wei Y and Qiao Z 2016 New J. Phys. 18 113011
[15] Zhang L, Yu Z, Xu F and Wang J 2018 Carbon 126 183
[16] Yu Z and Xu F 2018 Chin. Phys. B 27 127203
[17] Wang K T, Wang H, Xu F, Yu Y and Wei Y 2023 New J. Phys. 25 013019
[18] An X T, et al. 2017 Phys. Rev. Lett. 118 096602
[19] Bawden L, Cooil S, Mazzola F, et al. 2016 Nat. Commun. 7 11711
[20] Wang Y, Deng L, Wei Q, et al. 2020 Nano Lett. 20 2129
[21] Liu J Y, Yu J, Ning J L, et al. 2021 Nat. Commun. 12 4062
[22] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Zhang D, Yao W and Xu X 2015 Nat. Phys. 11 148
[23] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[24] Singh N and Schwingenschlögl U 2017 Adv. Mater. 29 1600970
[25] Zhao C, Norden T, Zhang P, et al. 2017 Nat. Nanotechnol. 12 757
[26] Scharf B, Xu G, Matos-Abiague A and Žutic I 2017 Phys. Rev. Lett. 119 127403
[27] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405
[28] Tao L and Tsymbal E Y 2020 npj Comput Mater 6 172
[29] Tao L L and Wang J 2017 Nanoscale 9 12684
[30] Song T, et al. 2018 Science 360 1214
[31] Rycerz A, Tworzydlo J and Beenakker C W J 2017 Nat. Phys. 3 172
[32] Kim Y and Lee J D 2019 Phys. Rev. Appl. 11 034048
[33] Ang Y S, Yang S A, Zhang C, Ma Z and Ang L K 2017 Phys. Rev. B 96 245410
[34] Tao L L and Tsymbal E Y 2019 Phys. Rev. B 100 161110
[35] Tao L L, Naeemi A and Tsymbal E Y 2020 Phys. Rev. Applied 13 054043
[36] Manipatruni S, Nikonov D E, Lin C C, Gosavi T A, Liu H, Prasad B, Huang Y L, Bonturim E, Ramesh R and Young I A 2019 Nature 565 35
[37] Tao L L and Tsymbal E Y 2021 J. Phys. D 54 113001
[38] Liu C C, W. Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[39] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[40] Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[41] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[42] Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang S C and Jia J 2015 Nat. Mater. 14 1020
[43] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[44] Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563
[45] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[46] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[47] Tao L L, Cheung K T, Zhang L and Wang J 2017 Phys. Rev. B 95 121407
[48] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[49] Falson J, et al. 2020 Science 367 1454
[50] Liu Y, Weiss N, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[51] Cao Y, et al. 2018 Nature 556 43
[52] Cao Y, et al. 2018 Nature 556 80
[53] Xiao Y, Liu J and Fu L 2020 Matter 3 1142
[54] Keimer B and Moore J E 2017 Nat. Phys. 13 1045
[55] Tokura Y, Kawasaki M and Nagaosa N 2017 Nat. Phys. 13 1056
[56] Yamauchi K, Barone P, Shishidou T, Oguchi T and Picozzi S 2015 Phys. Rev. Lett. 115 037602
[57] Tao L L, Paudel T R, Kovalev A A and Tsymbal E Y 2017 Phys. Rev. B 95 245141
[58] Tao L L and Tsymbal E Y 2018 Nat. Commun. 9 2763
[59] Khani H and Piri Pishekloo S 2020 Nanoscale 12 22281
[60] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612
[61] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[62] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601
[63] Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511
[64] Li J, Wang K, McFaul K J, Zern Z, Ren Y F, Watanabe K, Taniguchi T, Qiao Z H and Zhu J 2016 Nat. Nanotechnol. 11 1060
[65] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science 362 1149
[66] Wu B L, Wang Z B, Zhang Z Q and Jiang H 2021 Phys. Rev. B 104 195416
[1] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[2] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[3] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[6] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[7] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[8] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
[9] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[10] Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
Wei-Tao Lu(卢伟涛), Yue Mao(毛岳), and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2023, 32(10): 107403.
[11] Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness
Yanwei Wu(吴彦玮), Zongyuan Zhang(张宗源), Liang Ma(马亮), Tao Liu(刘涛), Ning Hao(郝宁), Wengang Lü(吕文刚), Mingsheng Long(龙明生), and Lei Shan(单磊). Chin. Phys. B, 2023, 32(10): 107506.
[12] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[13] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[14] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[15] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
No Suggested Reading articles found!