Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Perspectives of spin-valley locking devices |
Lingling Tao(陶玲玲)† |
School of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Valleytronics is an emerging field of research which utilizes the valley degree of freedom to encode information. However, it is technically nontrivial to produce a stable valley polarization and to achieve efficient control and manipulation of valleys. Spin-valley locking refers to the coupling between spin and valley degrees of freedom in the materials with large spin-orbit coupling (SOC) and enables the manipulation of valleys indirectly through controlling spins. Here, we review the recent advances in spin-valley locking physics and outline possible device implications. In particular, we focus on the spin-valley locking induced by SOC and external electric field in certain two-dimensional materials with inversion symmetry and demonstrate the intriguing switchable valley-spin polarization, which can be utilized to design the promising electronic devices, namely, valley-spin valves and logic gates.
|
Received: 16 February 2023
Revised: 16 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. FRFCU5710053421) and the National Natural Science Foundation of China (Grant No. 12274102). |
Corresponding Authors:
Lingling Tao
E-mail: lltao@hit.edu.cn
|
Cite this article:
Lingling Tao(陶玲玲) Perspectives of spin-valley locking devices 2023 Chin. Phys. B 32 107306
|
[1] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [2] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [3] Sun Z H, Guan H M, Fu L, Shen B and Tang N 2021 Acta Phys. Sin. 70 027302 (in Chinese) [4] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [7] Manzeli S, Ovchinnikov S, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [8] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887 [9] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechol. 7 490 [10] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [11] Yu Z, Xu F and Wang J 2015 Carbon 99 451 [12] Yu H, Cui X, Xu X and Yao W 2015 Natl. Sci. Rev. 2 57 [13] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428 [14] Xu F, Yu Z, Ren Y, Wang B, Wei Y and Qiao Z 2016 New J. Phys. 18 113011 [15] Zhang L, Yu Z, Xu F and Wang J 2018 Carbon 126 183 [16] Yu Z and Xu F 2018 Chin. Phys. B 27 127203 [17] Wang K T, Wang H, Xu F, Yu Y and Wei Y 2023 New J. Phys. 25 013019 [18] An X T, et al. 2017 Phys. Rev. Lett. 118 096602 [19] Bawden L, Cooil S, Mazzola F, et al. 2016 Nat. Commun. 7 11711 [20] Wang Y, Deng L, Wei Q, et al. 2020 Nano Lett. 20 2129 [21] Liu J Y, Yu J, Ning J L, et al. 2021 Nat. Commun. 12 4062 [22] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Zhang D, Yao W and Xu X 2015 Nat. Phys. 11 148 [23] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 [24] Singh N and Schwingenschlögl U 2017 Adv. Mater. 29 1600970 [25] Zhao C, Norden T, Zhang P, et al. 2017 Nat. Nanotechnol. 12 757 [26] Scharf B, Xu G, Matos-Abiague A and Žutic I 2017 Phys. Rev. Lett. 119 127403 [27] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405 [28] Tao L and Tsymbal E Y 2020 npj Comput Mater 6 172 [29] Tao L L and Wang J 2017 Nanoscale 9 12684 [30] Song T, et al. 2018 Science 360 1214 [31] Rycerz A, Tworzydlo J and Beenakker C W J 2017 Nat. Phys. 3 172 [32] Kim Y and Lee J D 2019 Phys. Rev. Appl. 11 034048 [33] Ang Y S, Yang S A, Zhang C, Ma Z and Ang L K 2017 Phys. Rev. B 96 245410 [34] Tao L L and Tsymbal E Y 2019 Phys. Rev. B 100 161110 [35] Tao L L, Naeemi A and Tsymbal E Y 2020 Phys. Rev. Applied 13 054043 [36] Manipatruni S, Nikonov D E, Lin C C, Gosavi T A, Liu H, Prasad B, Huang Y L, Bonturim E, Ramesh R and Young I A 2019 Nature 565 35 [37] Tao L L and Tsymbal E Y 2021 J. Phys. D 54 113001 [38] Liu C C, W. Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [39] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [40] Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002 [41] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [42] Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang S C and Jia J 2015 Nat. Mater. 14 1020 [43] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [44] Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563 [45] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [46] Ezawa M 2012 Phys. Rev. Lett. 109 055502 [47] Tao L L, Cheung K T, Zhang L and Wang J 2017 Phys. Rev. B 95 121407 [48] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) [49] Falson J, et al. 2020 Science 367 1454 [50] Liu Y, Weiss N, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042 [51] Cao Y, et al. 2018 Nature 556 43 [52] Cao Y, et al. 2018 Nature 556 80 [53] Xiao Y, Liu J and Fu L 2020 Matter 3 1142 [54] Keimer B and Moore J E 2017 Nat. Phys. 13 1045 [55] Tokura Y, Kawasaki M and Nagaosa N 2017 Nat. Phys. 13 1056 [56] Yamauchi K, Barone P, Shishidou T, Oguchi T and Picozzi S 2015 Phys. Rev. Lett. 115 037602 [57] Tao L L, Paudel T R, Kovalev A A and Tsymbal E Y 2017 Phys. Rev. B 95 245141 [58] Tao L L and Tsymbal E Y 2018 Nat. Commun. 9 2763 [59] Khani H and Piri Pishekloo S 2020 Nanoscale 12 22281 [60] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [61] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738 [62] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601 [63] Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511 [64] Li J, Wang K, McFaul K J, Zern Z, Ren Y F, Watanabe K, Taniguchi T, Qiao Z H and Zhu J 2016 Nat. Nanotechnol. 11 1060 [65] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science 362 1149 [66] Wu B L, Wang Z B, Zhang Z Q and Jiang H 2021 Phys. Rev. B 104 195416 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|