Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017402    DOI: 10.1088/1674-1056/aca3a2
RAPID COMMUNICATION Prev   Next  

Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice

Qing-Song Yang(杨清松)1,2, Bin-Bin Ruan(阮彬彬)1,†, Meng-Hu Zhou(周孟虎)1, Ya-Dong Gu(谷亚东)1,2, Ming-Wei Ma(马明伟)1, Gen-Fu Chen(陈根富)1,2, and Zhi-An Ren(任治安)1,2,‡
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr$_2$. It crystallizes in a C15-type (cubic MgCu$_2$-type, space group $Fd\overline{3}m$) structure in which the Ir atoms form a kagome lattice, with cell parameters $a=b=c=7.3596(1)$ Å. Resistivity and magnetic susceptibility measurements indicate that ZrIr$_2$ is a type-II superconductor with a transition temperature of 4.0 K. The estimated lower and upper critical fields are 12.8 mT and 4.78 T, respectively. Heat capacity measurements confirm the bulk superconductivity in ZrIr$_2$. ZrIr$_2$ is found to possibly host strong-coupled s-wave superconductivity with the normalized specific heat change $\Delta C_{\rm e}/\gamma T_{\rm c} \sim 1.86$ and the coupling strength $\Delta_0/k_{\rm B}T_{\rm c} \sim 1.92$. First-principles calculations suggest that ZrIr$_2$ has three-dimensional Fermi surfaces with simple topologies, and the states at Fermi level mainly originate from the Ir-5d and Zr-4d orbitals. Similar to SrIr$_2$ and ThIr$_2$, spin--orbit coupling has dramatic influences on the band structure in ZrIr$_2$.
Keywords:  ZrIr2      superconductivity      Laves phase      kagome lattice      spin-orbit coupling  
Received:  28 September 2022      Revised:  02 November 2022      Accepted manuscript online:  17 November 2022
PACS:  74.25.-q (Properties of superconductors)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Bt (Thermodynamic properties)  
  71.20.Lp (Intermetallic compounds)  
Fund: Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
Corresponding Authors:  Bin-Bin Ruan, Zhi-An Ren     E-mail:  bbruan@mail.ustc.edu.cn;renzhian@iphy.ac.cn

Cite this article: 

Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安) Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice 2023 Chin. Phys. B 32 017402

[1] Compton V and Matthias B T 1959 Acta Crystallogr. 12 651
[2] Hamilton D, Raub C J, Matthias B, Corenzwit E and Hull Jr G 1965 J. Phys. Chem. Solids 26 665
[3] Stein F, Palm M and Sauthoff G 2004 Intermetallics 12 713
[4] Ren W J and Zhang Z D 2013 Chin. Phys. B 22 077507
[5] Samata H, Fujiwara N, Nagata Y, Uchida T and Der Lan M 1999 J. Magn. Magn. Mater. 195 376
[6] Ivey D G and Northwood D O 1986 Z. Phys. Chem. 147 191
[7] Kohlmann H 2020 Z. Kristallogr. Cryst. Mater. 235 319
[8] Inoue K, Kuroda T and Tachikawa K 1979 IEEE Trans. Magn. 15 635
[9] Inoue K, Kuroda T and Tachikawa K 1985 J. Nucl. Mater. 133-134 815
[10] Hishinuma Y, Kikuchi A, Iijima Y, Yoshida Y, Takeuchi T, Nishimura A and Inoue K 2004 J. Nucl. Mater. 329-333 1580
[11] Matthias B, Compton V and Corenzwit E 1961 J. Phys. Chem. Solids 19 130
[12] Stein F and Leineweber A 2021 J. Mater. Sci. 56 5321
[13] Finlayson T and Khan H 1978 Appl. Phys. 17 165
[14] Inoue K, Tachikawa K and Iwasa Y 1971 Appl. Phys. Lett. 18 235
[15] Hishinuma Y, Kikuchi A, Iijima Y, Yoshida Y, Takeuchi T, Nishimura A and Inoue K 2006 Fusion Eng. Des. 81 975
[16] Roy S 1992 Philos. Mag. B 65 1435
[17] Roy S and Chaddah P 1999 Pramana 53 659
[18] Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N, Vishwanath A and Cava R 2015 Phys. Rev. B 91 214517
[19] Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y, Luo J, Wang Z, Wang Y, Ling L, Tian M, Jia S, Feng J, Liu X, Wei J and Wang J 2016 npj Quantum Mater. 1 16005
[20] Haldolaarachchige N, Gibson Q, Schoop L M, Luo H and Cava R 2015 J. Phys.: Condens. Matter 27 185701
[21] Yang X, Li H, He T, Taguchi T, Wang Y, Goto H, Eguchi R, Horie R, Horigane K, Kobayashi K, Akimitsu J, Ishii H, Liao Y F, Yamaoka H and Kubozono Y 2019 J. Phys.: Condens. Matter 32 025704
[22] Horie R, Horigane K, Nishiyama S, Akimitsu M, Kobayashi K, Onari S, Kambe T, Kubozono Y and Akimitsu J 2020 J. Phys.: Condens. Matter 32 175703
[23] Gutowska S, Górnicka K, Wójcik P, Klimczuk T and Wiendlocha B 2021 Phys. Rev. B 104 054505
[24] Xiao G, Wu S, Li B, Liu B, Wu J, Cui Y, Zhu Q, Cao G and Ren Z 2021 Intermetallics 128 106993
[25] Koshinuma T, Ninomiya H, Hase I, Fujihisa H, Gotoh Y, Kawashima K, Ishida S, Yoshida Y, Eisaki H, Nishio T and Iyo A 2022 Intermetallics 148 107643
[26] Zhang Y, Tao X M and Tan M Q 2017 Chin. Phys. B 26 047401
[27] Matthias B, Geballe T and Compton V 1963 Rev. Mod. Phys. 35 1
[28] Stein R, Barberis G and Rettori C 1981 Solid State Commun. 39 1157
[29] Slebarski A, Wohlleben D and Weidner P 1985 Z. Phys. B: Condens. Matter 61 177
[30] Slebarski A and Wohlleben D 1985 Z. Phys. B: Condens. Matter 60 449
[31] Toby B 2001 J. Appl. Crystallogr. 34 210
[32] Ruan B B, Sun J N, Chen Y, Yang Q S, Zhao K, Zhou M H, Gu Y D, Ma M W, Chen G F, Shan L and Ren Z A 2022 Sci. Chin. Mater. 65 3125
[33] Prozorov R and Kogan V G 2018 Phys. Rev. Appl. 10 014030
[34] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[35] Dal Corso A 2014 Comput. Mater. Sci. 95 337
[36] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[37] Hu C R 1972 Phys. Rev. B 6 1756
[38] McMillan W L 1968 Phys. Rev. 167 331
[39] Padamsee H, Neighbor J and Shiffman C 1973 J. Low Temp. Phys. 12 387
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[14] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[15] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
No Suggested Reading articles found!