|
|
Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice |
Qing-Song Yang(杨清松)1,2, Bin-Bin Ruan(阮彬彬)1,†, Meng-Hu Zhou(周孟虎)1, Ya-Dong Gu(谷亚东)1,2, Ming-Wei Ma(马明伟)1, Gen-Fu Chen(陈根富)1,2, and Zhi-An Ren(任治安)1,2,‡ |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr$_2$. It crystallizes in a C15-type (cubic MgCu$_2$-type, space group $Fd\overline{3}m$) structure in which the Ir atoms form a kagome lattice, with cell parameters $a=b=c=7.3596(1)$ Å. Resistivity and magnetic susceptibility measurements indicate that ZrIr$_2$ is a type-II superconductor with a transition temperature of 4.0 K. The estimated lower and upper critical fields are 12.8 mT and 4.78 T, respectively. Heat capacity measurements confirm the bulk superconductivity in ZrIr$_2$. ZrIr$_2$ is found to possibly host strong-coupled s-wave superconductivity with the normalized specific heat change $\Delta C_{\rm e}/\gamma T_{\rm c} \sim 1.86$ and the coupling strength $\Delta_0/k_{\rm B}T_{\rm c} \sim 1.92$. First-principles calculations suggest that ZrIr$_2$ has three-dimensional Fermi surfaces with simple topologies, and the states at Fermi level mainly originate from the Ir-5d and Zr-4d orbitals. Similar to SrIr$_2$ and ThIr$_2$, spin--orbit coupling has dramatic influences on the band structure in ZrIr$_2$.
|
Received: 28 September 2022
Revised: 02 November 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
71.20.Lp
|
(Intermetallic compounds)
|
|
Fund: Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000). |
Corresponding Authors:
Bin-Bin Ruan, Zhi-An Ren
E-mail: bbruan@mail.ustc.edu.cn;renzhian@iphy.ac.cn
|
Cite this article:
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安) Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice 2023 Chin. Phys. B 32 017402
|
[1] Compton V and Matthias B T 1959 Acta Crystallogr. 12 651 [2] Hamilton D, Raub C J, Matthias B, Corenzwit E and Hull Jr G 1965 J. Phys. Chem. Solids 26 665 [3] Stein F, Palm M and Sauthoff G 2004 Intermetallics 12 713 [4] Ren W J and Zhang Z D 2013 Chin. Phys. B 22 077507 [5] Samata H, Fujiwara N, Nagata Y, Uchida T and Der Lan M 1999 J. Magn. Magn. Mater. 195 376 [6] Ivey D G and Northwood D O 1986 Z. Phys. Chem. 147 191 [7] Kohlmann H 2020 Z. Kristallogr. Cryst. Mater. 235 319 [8] Inoue K, Kuroda T and Tachikawa K 1979 IEEE Trans. Magn. 15 635 [9] Inoue K, Kuroda T and Tachikawa K 1985 J. Nucl. Mater. 133-134 815 [10] Hishinuma Y, Kikuchi A, Iijima Y, Yoshida Y, Takeuchi T, Nishimura A and Inoue K 2004 J. Nucl. Mater. 329-333 1580 [11] Matthias B, Compton V and Corenzwit E 1961 J. Phys. Chem. Solids 19 130 [12] Stein F and Leineweber A 2021 J. Mater. Sci. 56 5321 [13] Finlayson T and Khan H 1978 Appl. Phys. 17 165 [14] Inoue K, Tachikawa K and Iwasa Y 1971 Appl. Phys. Lett. 18 235 [15] Hishinuma Y, Kikuchi A, Iijima Y, Yoshida Y, Takeuchi T, Nishimura A and Inoue K 2006 Fusion Eng. Des. 81 975 [16] Roy S 1992 Philos. Mag. B 65 1435 [17] Roy S and Chaddah P 1999 Pramana 53 659 [18] Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N, Vishwanath A and Cava R 2015 Phys. Rev. B 91 214517 [19] Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y, Luo J, Wang Z, Wang Y, Ling L, Tian M, Jia S, Feng J, Liu X, Wei J and Wang J 2016 npj Quantum Mater. 1 16005 [20] Haldolaarachchige N, Gibson Q, Schoop L M, Luo H and Cava R 2015 J. Phys.: Condens. Matter 27 185701 [21] Yang X, Li H, He T, Taguchi T, Wang Y, Goto H, Eguchi R, Horie R, Horigane K, Kobayashi K, Akimitsu J, Ishii H, Liao Y F, Yamaoka H and Kubozono Y 2019 J. Phys.: Condens. Matter 32 025704 [22] Horie R, Horigane K, Nishiyama S, Akimitsu M, Kobayashi K, Onari S, Kambe T, Kubozono Y and Akimitsu J 2020 J. Phys.: Condens. Matter 32 175703 [23] Gutowska S, Górnicka K, Wójcik P, Klimczuk T and Wiendlocha B 2021 Phys. Rev. B 104 054505 [24] Xiao G, Wu S, Li B, Liu B, Wu J, Cui Y, Zhu Q, Cao G and Ren Z 2021 Intermetallics 128 106993 [25] Koshinuma T, Ninomiya H, Hase I, Fujihisa H, Gotoh Y, Kawashima K, Ishida S, Yoshida Y, Eisaki H, Nishio T and Iyo A 2022 Intermetallics 148 107643 [26] Zhang Y, Tao X M and Tan M Q 2017 Chin. Phys. B 26 047401 [27] Matthias B, Geballe T and Compton V 1963 Rev. Mod. Phys. 35 1 [28] Stein R, Barberis G and Rettori C 1981 Solid State Commun. 39 1157 [29] Slebarski A, Wohlleben D and Weidner P 1985 Z. Phys. B: Condens. Matter 61 177 [30] Slebarski A and Wohlleben D 1985 Z. Phys. B: Condens. Matter 60 449 [31] Toby B 2001 J. Appl. Crystallogr. 34 210 [32] Ruan B B, Sun J N, Chen Y, Yang Q S, Zhao K, Zhou M H, Gu Y D, Ma M W, Chen G F, Shan L and Ren Z A 2022 Sci. Chin. Mater. 65 3125 [33] Prozorov R and Kogan V G 2018 Phys. Rev. Appl. 10 014030 [34] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 [35] Dal Corso A 2014 Comput. Mater. Sci. 95 337 [36] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406 [37] Hu C R 1972 Phys. Rev. B 6 1756 [38] McMillan W L 1968 Phys. Rev. 167 331 [39] Padamsee H, Neighbor J and Shiffman C 1973 J. Low Temp. Phys. 12 387 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|