Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030308    DOI: 10.1088/1674-1056/ac873b
GENERAL Prev   Next  

Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects

Rui Li(李睿) and Hang Zhang(张航)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Strong ‘spin’-orbit coupled one-dimensional hole gas is achievable in a Ge nanowire in the presence of a strong magnetic field. The strong magnetic field lifts the two-fold degeneracy in the hole subband dispersions, so that the effective low-energy subband dispersion exhibits strong spin-orbit coupling. Here, we study the electrical spin manipulation in a Ge nanowire quantum dot for both the lowest and second lowest hole subband dispersions. Using a finite square well to model the quantum dot confining potential, we calculate exactly the level splitting of the spin-orbit qubit and the Rabi frequency in the electric-dipole spin resonance. The spin-orbit coupling modulated longitudinal g-factor gso is not only non-vanishing but also magnetic field dependent. Moreover, the spin-orbit couplings of the lowest and second lowest subband dispersions have opposite magnetic dependences, so that the results for these two subband dispersions are totally different. It should be noticed that we focus only on the properties of the hole ‘spin’ instead of the real hole spin.
Keywords:  quantum dot      hole spin      spin-orbit coupling      electric-dipole spin resonance  
Received:  13 June 2022      Revised:  26 July 2022      Accepted manuscript online:  05 August 2022
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  73.21.La (Quantum dots)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  76.30.-v (Electron paramagnetic resonance and relaxation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11404020), the Project from the Department of Education of Hebei Province (Grant No. QN2019057), and the Starting up Foundation from Yanshan University (Grant No. BL18043).
Corresponding Authors:  Rui Li     E-mail:  ruili@ysu.edu.cn

Cite this article: 

Rui Li(李睿) and Hang Zhang(张航) Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects 2023 Chin. Phys. B 32 030308

[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3] Wu M, Jiang J and Weng M 2010 Phys. Rep. 493 61
[4] Vandersypen L M K and Eriksson M A 2019 Phys. Today 72 38
[5] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2018 Natl. Sci. Rev. 6 32
[6] Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G and Veldhorst M 2021 Nat. Rev. Mater. 6 926
[7] Hendrickx N W, Lawrie W I L, Petit L, Sammak A, Scappucci G and Veldhorst M 2020 Nat. Commun. 11 3478
[8] Jirovec D, Hofmann A, Ballabio A, Mutter P M, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F, Saez-Mollejo J, Prieto I, Borovkov M, Arbiol J, Chrastina D, Isella G and Katsaros G 2021 Nature Materials 20 1106
[9] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[10] Witzel W M and Das Sarma S 2006 Phys. Rev. B 74 035322
[11] Yao W, Liu R B and Sham L J 2006 Phys. Rev. B 74 195301
[12] Cywinski L, Witzel W M and Das Sarma S 2009 Phys. Rev. Lett. 102 057601
[13] Winkler R 2003 Spin-Orbit Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[14] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[15] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[16] Luttinger J M 1956 Phys. Rev. 102 1030
[17] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z, Cao G, Wang T, Zhang J J, Culcer D, Hu X, Jiang H W, Li H O, Guo G C and Guo G P 2022 Nat. Commun. 13 206
[18] Wang Z, Marcellina E, Hamilton A R, Cullen J H, Rogge S, Salfi J and Culcer D 2021 npj Quantum Inf. 7 54
[19] Terrazos L A, Marcellina E, Wang Z, Coppersmith S N, Friesen M, Hamilton A R, Hu X, Koiller B, Saraiva A L, Culcer D and Capaz R B 2021 Phys. Rev. B 103 125201
[20] Xiong J X, Guan S, Luo J W and Li S S 2021 Phys. Rev. B 103 085309
[21] Liu Y, Xiong J X, Wang Z, Ma W L, Guan S, Luo J W and Li S S 2022 Phys. Rev. B 105 075313
[22] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M 2020 Nature 577 487
[23] Lu W, Xiang J, Timko B P, Wu Y and Lieber C M 2005 Proc. Natl. Acad. Sci. USA 102 10046
[24] Roddaro S, Fuhrer A, Brusheim P, Fasth C, Xu H Q, Samuelson L, Xiang J and Lieber C M 2008 Phys. Rev. Lett. 101 186802
[25] Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J and Katsaros G 2018 Nat. Commun. 9 3902
[26] Froning F N M, Rančić M J, Hetényi B, Bosco S, Rehmann M K, Li A, Bakkers E P A M, Zwanenburg F A, Loss D, Zumbühl D M and Braakman F R 2021 Phys. Rev. Res. 3 013081
[27] Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T and Kruglyak V V 2012 Appl. Phys. Lett. 100 182404
[28] Wang H, Chen J, Yu T, Liu C, Guo C, Liu S, Shen K, Jia H, Liu T, Zhang J, Cabero M A, Song Q, Tu S, Wu M, Han X, Xia K, Yu D, Bauer G E W and Yu H 2021 Nano Res. 14 2133
[29] Andreani L C, Pasquarello A and Bassani F 1987 Phys. Rev. B 36 5887
[30] Kloeffel C, Trif M and Loss D 2011 Phys. Rev. B 84 195314
[31] Kloeffel C, Rančić M J and Loss D 2018 Phys. Rev. B 97 235422
[32] Li R 2021 J. Phys.: Condens. Matter 33 355302
[33] Li R 2022 J. Phys.: Condens. Matter 34 075301
[34] Trif M, Golovach V N and Loss D 2008 Phys. Rev. B 77 045434
[35] Li R, You J Q, Sun C P and Nori F 2013 Phys. Rev. Lett. 111 086805
[36] Nowak M P and Szafran B 2013 Phys. Rev. B 87 205436
[37] Romhányi J, Burkard G and Pályi A 2015 Phys. Rev. B 92 054422
[38] Khomitsky D, Lavrukhina E and Sherman E 2020 Phys. Rev. Appl. 14 014090
[39] Zhang D, Lou W K and Chang K 2019 Acta Phys. Sin. 68 167101 (in Chinese)
[40] Shi T T, Wang L J, Wang J K and Zhang W 2020 Acta Phys. Sin. 69 016701 (in Chinese)
[41] Li Z Q and Wang Y M 2019 Acta Phys. Sin. 68 173201 (in Chinese)
[42] Feng X J and Yin L 2020 Chin. Phys. B 29 110306
[43] Hai K, Zhu W, Chen Q and Hai W 2020 Chin. Phys. B 29 083203
[44] Wang J G, Li Y Q and Dong Y F 2020 Chin. Phys. B 29 100304
[45] Froning F N M, Camenzind L C, van der Molen O A H, Li A, Bakkers E P A M, Zumbühl D M and Braakman F R 2021 Nat. Nanotechnol. 16 308
[46] Venitucci B and Niquet Y M 2019 Phys. Rev. B 99 115317
[47] Milivojević M 2021 Phys. Rev. B 104 235304
[48] Adelsberger C, Benito M, Bosco S, Klinovaja J and Loss D 2022 Phys. Rev. B 105 075308
[49] Li R, Liu Z H, Wu Y and Liu C S 2018 Sci. Rep. 8 7400
[50] Li R 2018 J. Phys.: Condens. Matter 30 395304
[51] Li R 2020 J. Phys.: Condens. Matter 32 025305
[52] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[53] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084
[54] Csontos D, Brusheim P, Zülicke U and Xu H Q 2009 Phys. Rev. B 79 155323
[55] Lawaetz P 1971 Phys. Rev. B 4 3460
[56] Higginbotham A P, Kuemmeth F, Larsen T W, Fitzpatrick M, Yao J, Yan H, Lieber C M and Marcus C M 2014 Phys. Rev. Lett. 112 216806
[57] Sweeny M, Xu J and Shur M 1988 Superlatt. Microstruct. 4 623
[58] Sercel P C and Vahala K J 1990 Phys. Rev. B 42 3690
[59] Bychkov Y A and Rashba E I 1984 J. Phys. C: Solid State Phys. 17 6039
[60] Bosco S, Benito M, Adelsberger C and Loss D 2021 Phys. Rev. B 104 115425
[61] Maier F, Klinovaja J and Loss D 2014 Phys. Rev. B 90 195421
[62] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[63] Brauns M, Ridderbos J, Li A, Bakkers E P A M and Zwanenburg F A 2016 Phys. Rev. B 93 121408
[64] Maier F, Kloeffel C and Loss D 2013 Phys. Rev. B 87 161305
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[9] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
No Suggested Reading articles found!