Abstract Strong ‘spin’-orbit coupled one-dimensional hole gas is achievable in a Ge nanowire in the presence of a strong magnetic field. The strong magnetic field lifts the two-fold degeneracy in the hole subband dispersions, so that the effective low-energy subband dispersion exhibits strong spin-orbit coupling. Here, we study the electrical spin manipulation in a Ge nanowire quantum dot for both the lowest and second lowest hole subband dispersions. Using a finite square well to model the quantum dot confining potential, we calculate exactly the level splitting of the spin-orbit qubit and the Rabi frequency in the electric-dipole spin resonance. The spin-orbit coupling modulated longitudinal g-factor gso is not only non-vanishing but also magnetic field dependent. Moreover, the spin-orbit couplings of the lowest and second lowest subband dispersions have opposite magnetic dependences, so that the results for these two subband dispersions are totally different. It should be noticed that we focus only on the properties of the hole ‘spin’ instead of the real hole spin.
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11404020), the Project from the Department of Education of Hebei Province (Grant No. QN2019057), and the Starting up Foundation from Yanshan University (Grant No. BL18043).
Corresponding Authors:
Rui Li
E-mail: ruili@ysu.edu.cn
Cite this article:
Rui Li(李睿) and Hang Zhang(张航) Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects 2023 Chin. Phys. B 32 030308
[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys.76 323 [2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys.79 1217 [3] Wu M, Jiang J and Weng M 2010 Phys. Rep.493 61 [4] Vandersypen L M K and Eriksson M A 2019 Phys. Today72 38 [5] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2018 Natl. Sci. Rev.6 32 [6] Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G and Veldhorst M 2021 Nat. Rev. Mater.6 926 [7] Hendrickx N W, Lawrie W I L, Petit L, Sammak A, Scappucci G and Veldhorst M 2020 Nat. Commun.11 3478 [8] Jirovec D, Hofmann A, Ballabio A, Mutter P M, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F, Saez-Mollejo J, Prieto I, Borovkov M, Arbiol J, Chrastina D, Isella G and Katsaros G 2021 Nature Materials20 1106 [9] Loss D and DiVincenzo D P 1998 Phys. Rev. A57 120 [10] Witzel W M and Das Sarma S 2006 Phys. Rev. B74 035322 [11] Yao W, Liu R B and Sham L J 2006 Phys. Rev. B74 195301 [12] Cywinski L, Witzel W M and Das Sarma S 2009 Phys. Rev. Lett.102 057601 [13] Winkler R 2003 Spin-Orbit Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) [14] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater.8 383 [15] Luttinger J M and Kohn W 1955 Phys. Rev.97 869 [16] Luttinger J M 1956 Phys. Rev.102 1030 [17] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z, Cao G, Wang T, Zhang J J, Culcer D, Hu X, Jiang H W, Li H O, Guo G C and Guo G P 2022 Nat. Commun.13 206 [18] Wang Z, Marcellina E, Hamilton A R, Cullen J H, Rogge S, Salfi J and Culcer D 2021 npj Quantum Inf.7 54 [19] Terrazos L A, Marcellina E, Wang Z, Coppersmith S N, Friesen M, Hamilton A R, Hu X, Koiller B, Saraiva A L, Culcer D and Capaz R B 2021 Phys. Rev. B103 125201 [20] Xiong J X, Guan S, Luo J W and Li S S 2021 Phys. Rev. B103 085309 [21] Liu Y, Xiong J X, Wang Z, Ma W L, Guan S, Luo J W and Li S S 2022 Phys. Rev. B105 075313 [22] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M 2020 Nature577 487 [23] Lu W, Xiang J, Timko B P, Wu Y and Lieber C M 2005 Proc. Natl. Acad. Sci. USA102 10046 [24] Roddaro S, Fuhrer A, Brusheim P, Fasth C, Xu H Q, Samuelson L, Xiang J and Lieber C M 2008 Phys. Rev. Lett.101 186802 [25] Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J and Katsaros G 2018 Nat. Commun.9 3902 [26] Froning F N M, Rančić M J, Hetényi B, Bosco S, Rehmann M K, Li A, Bakkers E P A M, Zwanenburg F A, Loss D, Zumbühl D M and Braakman F R 2021 Phys. Rev. Res.3 013081 [27] Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T and Kruglyak V V 2012 Appl. Phys. Lett.100 182404 [28] Wang H, Chen J, Yu T, Liu C, Guo C, Liu S, Shen K, Jia H, Liu T, Zhang J, Cabero M A, Song Q, Tu S, Wu M, Han X, Xia K, Yu D, Bauer G E W and Yu H 2021 Nano Res.14 2133 [29] Andreani L C, Pasquarello A and Bassani F 1987 Phys. Rev. B36 5887 [30] Kloeffel C, Trif M and Loss D 2011 Phys. Rev. B84 195314 [31] Kloeffel C, Rančić M J and Loss D 2018 Phys. Rev. B97 235422 [32] Li R 2021 J. Phys.: Condens. Matter33 355302 [33] Li R 2022 J. Phys.: Condens. Matter34 075301 [34] Trif M, Golovach V N and Loss D 2008 Phys. Rev. B77 045434 [35] Li R, You J Q, Sun C P and Nori F 2013 Phys. Rev. Lett.111 086805 [36] Nowak M P and Szafran B 2013 Phys. Rev. B87 205436 [37] Romhányi J, Burkard G and Pályi A 2015 Phys. Rev. B92 054422 [38] Khomitsky D, Lavrukhina E and Sherman E 2020 Phys. Rev. Appl.14 014090 [39] Zhang D, Lou W K and Chang K 2019 Acta Phys. Sin.68 167101 (in Chinese) [40] Shi T T, Wang L J, Wang J K and Zhang W 2020 Acta Phys. Sin.69 016701 (in Chinese) [41] Li Z Q and Wang Y M 2019 Acta Phys. Sin.68 173201 (in Chinese) [42] Feng X J and Yin L 2020 Chin. Phys. B29 110306 [43] Hai K, Zhu W, Chen Q and Hai W 2020 Chin. Phys. B29 083203 [44] Wang J G, Li Y Q and Dong Y F 2020 Chin. Phys. B29 100304 [45] Froning F N M, Camenzind L C, van der Molen O A H, Li A, Bakkers E P A M, Zumbühl D M and Braakman F R 2021 Nat. Nanotechnol.16 308 [46] Venitucci B and Niquet Y M 2019 Phys. Rev. B99 115317 [47] Milivojević M 2021 Phys. Rev. B104 235304 [48] Adelsberger C, Benito M, Bosco S, Klinovaja J and Loss D 2022 Phys. Rev. B105 075308 [49] Li R, Liu Z H, Wu Y and Liu C S 2018 Sci. Rep.8 7400 [50] Li R 2018 J. Phys.: Condens. Matter30 395304 [51] Li R 2020 J. Phys.: Condens. Matter32 025305 [52] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science318 1430 [53] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature468 1084 [54] Csontos D, Brusheim P, Zülicke U and Xu H Q 2009 Phys. Rev. B79 155323 [55] Lawaetz P 1971 Phys. Rev. B4 3460 [56] Higginbotham A P, Kuemmeth F, Larsen T W, Fitzpatrick M, Yao J, Yan H, Lieber C M and Marcus C M 2014 Phys. Rev. Lett.112 216806 [57] Sweeny M, Xu J and Shur M 1988 Superlatt. Microstruct.4 623 [58] Sercel P C and Vahala K J 1990 Phys. Rev. B42 3690 [59] Bychkov Y A and Rashba E I 1984 J. Phys. C: Solid State Phys.17 6039 [60] Bosco S, Benito M, Adelsberger C and Loss D 2021 Phys. Rev. B104 115425 [61] Maier F, Klinovaja J and Loss D 2014 Phys. Rev. B90 195421 [62] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [63] Brauns M, Ridderbos J, Li A, Bakkers E P A M and Zwanenburg F A 2016 Phys. Rev. B93 121408 [64] Maier F, Kloeffel C and Loss D 2013 Phys. Rev. B87 161305
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.