Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070306    DOI: 10.1088/1674-1056/ac538e
GENERAL Prev   Next  

Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential

S Wang(王双)1, Y H Liu(刘元慧)2, and T F Xu(徐天赋)1,†
1 Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  We numerically investigate the gap solitons in Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC) in the parity-time ($\mathcal{PT}$)-symmetric periodic potential. We find that the depths and periods of the imaginary lattice have an important influence on the shape and stability of these single-peak gap solitons and double-peak gap solitons in the first band gap. The dynamics of these gap solitons are checked by the split-time-step Crank-Nicolson method. It is proved that the depths of the imaginary part of the $\mathcal{PT}$-symmetric periodic potential gradually increase, and the gap solitons become unstable. But the different periods of imaginary part hardly affect the stability of the gap solitons in the corresponding parameter interval.
Keywords:  gap solitons      spin-orbit coupling      $\mathcal{PT}$-symmetric periodic potential  
Received:  17 November 2021      Revised:  25 January 2022      Accepted manuscript online:  10 February 2022
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.-d (Ultracold gases, trapped gases)  
  75.70.Tj (Spin-orbit effects)  
Fund: This work is supported by Science and Technology Project of Hebei Education Department, China (Grant No. ZD2020200).
Corresponding Authors:  T F Xu     E-mail:  tfxu@ysu.edu.cn

Cite this article: 

S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋) Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential 2022 Chin. Phys. B 31 070306

[1] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[2] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[3] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[4] Dresselhaus G 1955 Phys. Rev. 100 580
[5] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[6] Kartashov Y V, Konotop V V and Zezyulin D A 2014 Phys. Rev. A 90 063621
[7] Xu T F, Zhang Y F, Xu L C and Li Z D 2017 Chin. Phys. B 26 100304
[8] Xu T F, Li W L, Li Z D and Zhang C 2018 Chaos Soliton Fract. 111 62
[9] Xu T F 2018 Chin. Phys. B 27 016702
[10] Ostrovskaya E A and Kivshar Y S 2003 Phys. Rev. Lett. 90 160407
[11] Desyatnikov A S, Ostrovskaya E A, Kivshar Y S and Denz C 2003 Phys. Rev. Lett. 91 153902
[12] Louis P J, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602
[13] Liu C F, Yu Y M, Gou S C and Liu W M 2013 Phys. Rev. A 87 063630
[14] Fetter A L 2014 Phys. Rev. A 89 023629
[15] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[16] Longhi S 2009 Phys. Rev. Lett. 103 123601
[17] Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 93 251601
[18] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[19] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[20] Nixon S and Yang J 2015 Phys. Rev. A 91 033807
[21] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
[22] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[23] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[24] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2010 Phys. Rev. A 81 063807
[25] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[26] Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502
[27] Cao Y and Cao J 2021 Chin. Phys. Lett. 38 080202
[28] Jones H F 2012 J. Phys. A:Math. Theor. 45 135306
[29] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[30] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408
[31] Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629
[32] Single F, Cartarius H, Wunner G and Main J 2014 Phys. Rev. A 90 042123
[33] Zhang Y, Liang Z and Wu B 2009 Phys. Rev. A 80 063815
[34] Zhou H, Douvenot R and Chabory A 2020 J. Comput. Phys. 402 109042
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!