|
|
Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential |
S Wang(王双)1, Y H Liu(刘元慧)2, and T F Xu(徐天赋)1,† |
1 Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China; 2 School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract We numerically investigate the gap solitons in Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC) in the parity-time ($\mathcal{PT}$)-symmetric periodic potential. We find that the depths and periods of the imaginary lattice have an important influence on the shape and stability of these single-peak gap solitons and double-peak gap solitons in the first band gap. The dynamics of these gap solitons are checked by the split-time-step Crank-Nicolson method. It is proved that the depths of the imaginary part of the $\mathcal{PT}$-symmetric periodic potential gradually increase, and the gap solitons become unstable. But the different periods of imaginary part hardly affect the stability of the gap solitons in the corresponding parameter interval.
|
Received: 17 November 2021
Revised: 25 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
Fund: This work is supported by Science and Technology Project of Hebei Education Department, China (Grant No. ZD2020200). |
Corresponding Authors:
T F Xu
E-mail: tfxu@ysu.edu.cn
|
Cite this article:
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋) Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential 2022 Chin. Phys. B 31 070306
|
[1] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101 [2] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [3] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [4] Dresselhaus G 1955 Phys. Rev. 100 580 [5] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404 [6] Kartashov Y V, Konotop V V and Zezyulin D A 2014 Phys. Rev. A 90 063621 [7] Xu T F, Zhang Y F, Xu L C and Li Z D 2017 Chin. Phys. B 26 100304 [8] Xu T F, Li W L, Li Z D and Zhang C 2018 Chaos Soliton Fract. 111 62 [9] Xu T F 2018 Chin. Phys. B 27 016702 [10] Ostrovskaya E A and Kivshar Y S 2003 Phys. Rev. Lett. 90 160407 [11] Desyatnikov A S, Ostrovskaya E A, Kivshar Y S and Denz C 2003 Phys. Rev. Lett. 91 153902 [12] Louis P J, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602 [13] Liu C F, Yu Y M, Gou S C and Liu W M 2013 Phys. Rev. A 87 063630 [14] Fetter A L 2014 Phys. Rev. A 89 023629 [15] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 [16] Longhi S 2009 Phys. Rev. Lett. 103 123601 [17] Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 93 251601 [18] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [19] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 [20] Nixon S and Yang J 2015 Phys. Rev. A 91 033807 [21] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803 [22] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402 [23] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [24] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2010 Phys. Rev. A 81 063807 [25] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 [26] Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502 [27] Cao Y and Cao J 2021 Chin. Phys. Lett. 38 080202 [28] Jones H F 2012 J. Phys. A:Math. Theor. 45 135306 [29] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817 [30] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408 [31] Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629 [32] Single F, Cartarius H, Wunner G and Main J 2014 Phys. Rev. A 90 042123 [33] Zhang Y, Liang Z and Wu B 2009 Phys. Rev. A 80 063815 [34] Zhou H, Douvenot R and Chabory A 2020 J. Comput. Phys. 402 109042 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|