CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions |
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾)† |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We study theoretically Josephson effect in a planar ballistic junction between two triplet superconductors with p-wave orbital symmetries and separated by a two-dimensional (2D) semiconductor channel with strong Rashba spin-orbit coupling. In triplet superconductors, three types of orbital symmetries are considered. We use Bogoliubov-de Gennes formalism to describe quasiparticle propagations through the junction and the supercurrents are calculated in terms of Andreev reflection coefficients. The features of the variation of the supercurrents with the change of the strength of Rashba spin-orbit coupling are investigated in some detail. It is found that for the three types of orbital symmetries considered, both the magnitudes of supercurrent and the current-phase relations can be manipulated effectively by tuning the strength of Rashba spin-orbit coupling. The interplay of Rashba spin-orbit coupling and Zeeman magnetic field on supercurrent is also investigated in some detail.
|
Received: 11 October 2021
Revised: 12 January 2022
Accepted manuscript online: 25 February 2022
|
PACS:
|
72.10.Bg
|
(General formulation of transport theory)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
Corresponding Authors:
Liang-Bin Hu
E-mail: lbhu26@126.com
|
Cite this article:
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾) Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions 2022 Chin. Phys. B 31 077201
|
[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [2] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin:Springer) [3] Dresselhaus G 1955 Phys. Rev. 100 580 [4] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039 [5] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610 [6] Fu J, Penteado P H, Hachiya M O, Loss D and Egues J C 2016 Phys. Rev. Lett. 117 226401 [7] Marinescu D C, Weigele P J, Zumbuhl D M and Egues J C 2019 Phys. Rev. Lett. 122 156601 [8] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [9] Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C and Awschalom D D 2005 Nat. Phys. 1 31 [10] Stern N P, Ghosh S, Xiang G, Zhu M, Samarth N and Awschalom D D 2006 Phys. Rev. Lett. 97 126603 [11] Valenzuela S O and Tinkham M 2006 Nature 442 176 [12] Kane C L and Mele E J 2006 Science 314 1692 [13] König M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [14] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [15] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [16] Franceschi S D, Kouwenhoven L, Schoenenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703 [17] Van Dam J A, Nazarov Y V, Bakkers E P A M, Franceschi S D and Kouwenhoven L P 2006 Nature 442 667 [18] Katsaros G 2010 Nat. Nanotechnol. 5 458 [19] Dirks T, Hughes T L, Lal S, Uchoa B, Chen Y F, Chialvo C, Goldbart P M and Mason N 2011 Nat. Phys. 7 386 [20] Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C and Burghard M 1999 Science 284 1508 [21] Morpurgo A F, Kong J, Marcus C M and Dai H 1999 Science 286 263 [22] Doh Y, Van Dam J, Roest A, Bakkers E, Kouwenhoven L and Franceschi S D 2005 Science 309 272 [23] Xiang J 2006 Nat. Nanotechnol. 1 208 [24] Cheng M and Lutchyn R M 2012 Phys. Rev. B 86 134522 [25] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407 [26] Alidoust M 2020 Phys. Rev. B 101 155123 [27] Beenakker C W J, Pikulin D I, Hyart T, Schomerus H and Dahlhaus J P 2003 Phys. Rev. Lett. 110 017003 [28] Buzdin A 2008 Phys. Rev. Lett. 101 107005 [29] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2008 Phys. Rev. Lett. 101 107001 [30] Liu J F and Chan K S 2010 Phys. Rev. B 82 125305 [31] Zazunov A, Egger R, Jonckheere T and Martin T 2009 Phys. Rev. Lett. 103 147004 [32] Costa A and Fabian J 2020 Phys. Rev. B 101 104508 [33] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532 [34] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39 [35] Fukumoto T, Taguchi K, Kobayashi S and Tanaka Y 2015 Phys. Rev. B 92 144514 [36] Hu C R 1994 Phys. Rev. Lett. 72 1526 [37] Furusaki A and Tsukada M 1991 Solid State Commun. 78 299 [38] Kashiwaya S and Tanaka Y 2000 Rep. Prog. Phys. 63 1641 [39] Asano Y 2006 Phys. Rev. B 72 092508 [40] Asano Y 2006 Phys. Rev. B 74 220501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|