Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048504    DOI: 10.1088/1674-1056/aca7e9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer

Zhongshu Feng(冯重舒)1, Changqiu Yu(于长秋)1,†, Haixia Huang(黄海侠)1, Haodong Fan(樊浩东)1, Mingzhang Wei(卫鸣璋)1, Birui Wu(吴必瑞)1, Menghao Jin(金蒙豪)1, Yanshan Zhuang(庄燕山)1, Ziji Shao(邵子霁)1, Hai Li(李海)1, Jiahong Wen(温嘉红)1, Jian Zhang(张鉴)2, Xuefeng Zhang(张雪峰)2, Ningning Wang(王宁宁)1, Sai Mu(穆赛)1, and Tiejun Zhou(周铁军)1,‡
1 School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Second Affiliation Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Current induced spin-orbit torque (SOT) switching of magnetization is a promising technology for nonvolatile spintronic memory and logic applications. In this work, we systematically investigated the effect of Ta thickness on the magnetic properties, field-free switching and SOT efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer with perpendicular magnetic anisotropy. We found that both the anisotropy field and coercivity increase with increasing Ta thickness from 0.15 nm to 0.4 nm. With further increase of Ta thickness to 0.5 nm, two-step switching is observed, indicating that the two magnetic layers are magnetically decoupled. Measurements of pulse-current induced magnetization switching and harmonic Hall voltages show that the critical switching current density increases while the field-free switching ratio and SOT efficiency decrease with increasing Ta thickness. Both the enhanced spin memory loss and reduced interlayer exchange coupling might be responsible for the βDL decrease as the Ta spacer thickness increases. The studied structure with the incorporation of a CoFeB layer is able to realize field-free switching in the strong ferromagnetic coupling region, which may contribute to the further development of magnetic tunnel junctions for better memory applications.
Keywords:  spin-orbit coupling      interlayer exchange-coupling      field-free switching  
Received:  08 September 2022      Revised:  26 November 2022      Accepted manuscript online:  02 December 2022
PACS:  85.70.-w (Magnetic devices)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Tj (Spin-orbit effects)  
Fund: Project supported by the ‘Pioneer’ and ‘Leading Goose’ Research and Development Program of Zhejiang Province, China (Grant No. 2022C01053), the National Natural Science Foundation of China (Grant Nos. 11874135, 12104119, and 12004090), Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01039), and Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ20F040005 and LQ21A050001).
Corresponding Authors:  Changqiu Yu, Tiejun Zhou     E-mail:  cqyu@hdu.edu.cn;tjzhou@hdu.edu.cn

Cite this article: 

Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军) Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer 2023 Chin. Phys. B 32 048504

[1] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[2] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[3] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S and Saitoh E 2008 Phys. Rev. Lett. 101 036601
[4] Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
[5] Haazen P P J, Mure E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
[6] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[7] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[8] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[9] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
[10] Walker M R, Leung P, Eltahla A A, Underwood A, Abayasingam A, Brasher N A, Li H, Wu B R, Maher L, Luciani F, Lloyd A R and Bull R A 2019 Sci. Rep. 9 13300
[11] Stamps R L, Breitkreutz S, Akerman J, Chumak A V, Otani Y, Bauer G E W, Thiele J U, Bowen M, Majetich S A, Klaui M, Prejbeanu I L, Dieny B, Dempsey N M and Hillebrands B 2014 J. Phys. D: Appl. Phys. 47 333001
[12] Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K and Wang K L 2016 Nano Lett. 16 7514
[13] Du Y, Gamou H, Takahashi S, Karube S, Kohda M and Nitta J 2020 Phys. Rev. Appl. 13 054014
[14] Razavi S A, Wu D, Yu G Q, Lau Y C, Wong K L, Zhu W H, He C L, Zhang Z Z, Coey J M D, Stamenov P, Amiri P K and Wang K L 2017 Phys. Rev. Appl. 7 024023
[15] Wu H, Razavi S A, Shao Q M, Li X, Wong K L, Liu Y X, Yin G and Wang K L 2019 Phys. Rev. B 99 184403
[16] Razavi A, Wu H, Shao Q M, Fang C, Dai B Q, Wong K, Han X F, Yu G Q and Wang K L 2020 Nano Lett. 20 3703
[17] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[18] Oh Y W, Baek S H C, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J and Park B G 2016 Nat. Nanotechnol. 11 878
[19] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M and Koopmans B 2016 Nat. Commun. 7 10854
[20] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[21] You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J and Salahuddin S 2015 Proc. Natl. Acad. Sci. USA 112 10310
[22] Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M and Han X F 2019 Nat. Commun. 10 233
[23] Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F and Song C 2017 Phys. Rev. B 95 104435
[24] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515
[25] Fan H D, Luo Y M, Wu B R, Xu X Y, Zhuang Y S, Feng Z S, Li W J and Zhou T J 2022 Phys. Rev. Lett. 120 142401
[26] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758
[27] Sokalski V, Moneck M T, Yang E and Zhu J G 2012 Appl. Phys. Lett. 101 072411
[28] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[29] Roschewsky N, Lambert C H and Salahuddin S 2017 Phys. Rev. B 96 064406
[30] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sanchez J C, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681
[31] Razavi A, Wu H, Dai B, He H, Wu D, Wong K, Yu G and Wang K L 2020 Appl. Phys. Lett. 117 182403
[32] Zheng Z Y, Zhang Y, Lopez V, Sanchez-Tejerina L, Shi J C, Feng X Q, Chen L, Wang Z L, Zhang Z Z, Zhang K, Hong B, Xu Y, Zhang Y G, Carpentieri M, Fert A, Finocchio G, Zhao W S and Amiri P K 2021 Nat. Commun. 12 4555
[33] Frackowiak L, Stobiecki F, Urbaniak M, Matczak M, Chaves-O Flynn G D, Bilski M, Glenz A and Kuswik P 2022 J. Magn. Magn. Mater. 544 168682
[34] Shu X Y, Liu L, Zhou J, Lin W N, Xie Q D, Zhao T Y, Zhou C H, Chen S H, Wang H, Chai J W, Ding Y S, Chen W and Chen J S 2022 Phys. Rev. Appl. 17 024031
[35] Parkin S S P 1991 Phys. Rev. Lett. 67 3598
[36] Parkin S S P and Mauri D 1991 Phys. Rev. B 44 7131
[37] Lazarski S, Skowronski W, Grochot K, Powroznik W, Kanak J, Schmidt M and Stobiecki T 2021 Phys. Rev. B 103 134421
[38] Zhu L and Buhrman R A 2019 Phys. Rev. Appl. 12 051002
[39] Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403
[40] Liu Y, Zhou B and Zhu J G 2019 Sci. Rep. 9 325
[41] Masuda H, Seki T, Lau Y C, Kubota T and Takanashi K 2020 Phys. Rev. B 101 224413
[42] Dai Z M, Liu W, Zhao X T, Liu L and Zhang Z D 2021 ACS Appl. Electron. Mater. 3 611
[43] Sheng Y, Edmonds K W, Ma X Q, Zheng H Z and Wang K Y 2018 Adv. Electron. Mater. 4 1800224
[44] Zhang R Q, Shi G Y, Su J, Shang Y X, Cai J W, Liao L Y, Pan F and Song C 2020 Appl. Phys. Lett. 117 212403
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!