INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer |
Zhongshu Feng(冯重舒)1, Changqiu Yu(于长秋)1,†, Haixia Huang(黄海侠)1, Haodong Fan(樊浩东)1, Mingzhang Wei(卫鸣璋)1, Birui Wu(吴必瑞)1, Menghao Jin(金蒙豪)1, Yanshan Zhuang(庄燕山)1, Ziji Shao(邵子霁)1, Hai Li(李海)1, Jiahong Wen(温嘉红)1, Jian Zhang(张鉴)2, Xuefeng Zhang(张雪峰)2, Ningning Wang(王宁宁)1, Sai Mu(穆赛)1, and Tiejun Zhou(周铁军)1,‡ |
1 School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Second Affiliation Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Current induced spin-orbit torque (SOT) switching of magnetization is a promising technology for nonvolatile spintronic memory and logic applications. In this work, we systematically investigated the effect of Ta thickness on the magnetic properties, field-free switching and SOT efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer with perpendicular magnetic anisotropy. We found that both the anisotropy field and coercivity increase with increasing Ta thickness from 0.15 nm to 0.4 nm. With further increase of Ta thickness to 0.5 nm, two-step switching is observed, indicating that the two magnetic layers are magnetically decoupled. Measurements of pulse-current induced magnetization switching and harmonic Hall voltages show that the critical switching current density increases while the field-free switching ratio and SOT efficiency decrease with increasing Ta thickness. Both the enhanced spin memory loss and reduced interlayer exchange coupling might be responsible for the βDL decrease as the Ta spacer thickness increases. The studied structure with the incorporation of a CoFeB layer is able to realize field-free switching in the strong ferromagnetic coupling region, which may contribute to the further development of magnetic tunnel junctions for better memory applications.
|
Received: 08 September 2022
Revised: 26 November 2022
Accepted manuscript online: 02 December 2022
|
PACS:
|
85.70.-w
|
(Magnetic devices)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
Fund: Project supported by the ‘Pioneer’ and ‘Leading Goose’ Research and Development Program of Zhejiang Province, China (Grant No. 2022C01053), the National Natural Science Foundation of China (Grant Nos. 11874135, 12104119, and 12004090), Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01039), and Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ20F040005 and LQ21A050001). |
Corresponding Authors:
Changqiu Yu, Tiejun Zhou
E-mail: cqyu@hdu.edu.cn;tjzhou@hdu.edu.cn
|
Cite this article:
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军) Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer 2023 Chin. Phys. B 32 048504
|
[1] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [2] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [3] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S and Saitoh E 2008 Phys. Rev. Lett. 101 036601 [4] Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611 [5] Haazen P P J, Mure E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299 [6] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601 [7] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [8] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230 [9] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404 [10] Walker M R, Leung P, Eltahla A A, Underwood A, Abayasingam A, Brasher N A, Li H, Wu B R, Maher L, Luciani F, Lloyd A R and Bull R A 2019 Sci. Rep. 9 13300 [11] Stamps R L, Breitkreutz S, Akerman J, Chumak A V, Otani Y, Bauer G E W, Thiele J U, Bowen M, Majetich S A, Klaui M, Prejbeanu I L, Dieny B, Dempsey N M and Hillebrands B 2014 J. Phys. D: Appl. Phys. 47 333001 [12] Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K and Wang K L 2016 Nano Lett. 16 7514 [13] Du Y, Gamou H, Takahashi S, Karube S, Kohda M and Nitta J 2020 Phys. Rev. Appl. 13 054014 [14] Razavi S A, Wu D, Yu G Q, Lau Y C, Wong K L, Zhu W H, He C L, Zhang Z Z, Coey J M D, Stamenov P, Amiri P K and Wang K L 2017 Phys. Rev. Appl. 7 024023 [15] Wu H, Razavi S A, Shao Q M, Li X, Wong K L, Liu Y X, Yin G and Wang K L 2019 Phys. Rev. B 99 184403 [16] Razavi A, Wu H, Shao Q M, Fang C, Dai B Q, Wong K, Han X F, Yu G Q and Wang K L 2020 Nano Lett. 20 3703 [17] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [18] Oh Y W, Baek S H C, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J and Park B G 2016 Nat. Nanotechnol. 11 878 [19] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M and Koopmans B 2016 Nat. Commun. 7 10854 [20] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 [21] You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J and Salahuddin S 2015 Proc. Natl. Acad. Sci. USA 112 10310 [22] Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M and Han X F 2019 Nat. Commun. 10 233 [23] Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F and Song C 2017 Phys. Rev. B 95 104435 [24] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515 [25] Fan H D, Luo Y M, Wu B R, Xu X Y, Zhuang Y S, Feng Z S, Li W J and Zhou T J 2022 Phys. Rev. Lett. 120 142401 [26] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758 [27] Sokalski V, Moneck M T, Yang E and Zhu J G 2012 Appl. Phys. Lett. 101 072411 [28] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425 [29] Roschewsky N, Lambert C H and Salahuddin S 2017 Phys. Rev. B 96 064406 [30] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sanchez J C, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681 [31] Razavi A, Wu H, Dai B, He H, Wu D, Wong K, Yu G and Wang K L 2020 Appl. Phys. Lett. 117 182403 [32] Zheng Z Y, Zhang Y, Lopez V, Sanchez-Tejerina L, Shi J C, Feng X Q, Chen L, Wang Z L, Zhang Z Z, Zhang K, Hong B, Xu Y, Zhang Y G, Carpentieri M, Fert A, Finocchio G, Zhao W S and Amiri P K 2021 Nat. Commun. 12 4555 [33] Frackowiak L, Stobiecki F, Urbaniak M, Matczak M, Chaves-O Flynn G D, Bilski M, Glenz A and Kuswik P 2022 J. Magn. Magn. Mater. 544 168682 [34] Shu X Y, Liu L, Zhou J, Lin W N, Xie Q D, Zhao T Y, Zhou C H, Chen S H, Wang H, Chai J W, Ding Y S, Chen W and Chen J S 2022 Phys. Rev. Appl. 17 024031 [35] Parkin S S P 1991 Phys. Rev. Lett. 67 3598 [36] Parkin S S P and Mauri D 1991 Phys. Rev. B 44 7131 [37] Lazarski S, Skowronski W, Grochot K, Powroznik W, Kanak J, Schmidt M and Stobiecki T 2021 Phys. Rev. B 103 134421 [38] Zhu L and Buhrman R A 2019 Phys. Rev. Appl. 12 051002 [39] Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403 [40] Liu Y, Zhou B and Zhu J G 2019 Sci. Rep. 9 325 [41] Masuda H, Seki T, Lau Y C, Kubota T and Takanashi K 2020 Phys. Rev. B 101 224413 [42] Dai Z M, Liu W, Zhao X T, Liu L and Zhang Z D 2021 ACS Appl. Electron. Mater. 3 611 [43] Sheng Y, Edmonds K W, Ma X Q, Zheng H Z and Wang K Y 2018 Adv. Electron. Mater. 4 1800224 [44] Zhang R Q, Shi G Y, Su J, Shang Y X, Cai J W, Liao L Y, Pan F and Song C 2020 Appl. Phys. Lett. 117 212403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|