Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock |
Mengyan Zeng(曾孟彦)1,2,3,†, Zixiao Ma(马子晓)2,3,4,†, Ruming Hu(胡如明)2,3,4, Baolin Zhang(张宝林)2,3, Yanmei Hao(郝艳梅)2,3,4, Huaqing Zhang(张华青)2,3, Yao Huang(黄垚)2,3, Hua Guan(管桦)2,3,5,‡, and Kelin Gao(高克林)2,3,§ |
1 Huazhong University of Science and Technology, Wuhan 430074, China; 2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 3 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Wuhan Institute of Quantum Technology, Wuhan 430206, China |
|
|
Abstract Future applications of portable 40Ca+ optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry; on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable 40Ca+ optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.
|
Received: 13 July 2023
Revised: 23 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
07.55.Nk
|
(Magnetic shielding in instruments)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: This work is supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001, 2022YFB3904004, and 2018YFA0307500), the National Natural Science Foundation of China (Grant Nos. 12022414 and 12121004), the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055), and the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201). |
Corresponding Authors:
Hua Guan, Kelin Gao
E-mail: guanhua@apm.ac.cn;klgao@apm.ac.cn
|
Cite this article:
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林) A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock 2023 Chin. Phys. B 32 110704
|
[1] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phy. Rev. Lett. 123 033201 [2] Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L and Huang X R 2022 Eur. Phys. J. D 76 140 [3] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [4] Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M and Gao K L 2022 Phy. Rev. Appl. 17 034041 [5] Zeng M Y, Huang Y, Zhang B L, Hao Y M, Ma Z X, Hu R M, Zhang H Q, Chen Z, Wang M, Guan H and Gao K L 2023 Phys. Rev. Appl. 19 064004 [6] Zhang Z Q, Arnold K J, Kaewuam R and Barrett M D 2023 Sci. Adv. 9 1971 [7] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [8] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 [9] Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, et al. 2021 Adv. Quan. Technol. 4 2100015 [10] Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C and Fang Z J 2022 Chin. Phys. Lett. 39 080601 [11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188 [12] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [13] Lange R, Huntemann N, Rahm J M, Sanner C, Shao H, Lipphardt B, Tamm C, Weyers S and Peik E 2021 Phys. Rev. Lett. 126 011102 [14] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420 [15] Beloy K, Bodine M I, Bothwell T, Brewer S M, Bromley S L, Chen J, Deschenes J, Diddams S A, Fasano R J, Fortier T M, et al. 2021 Nature 591 564 [16] Shen Q, Guan J, Ren J, Zeng L, Hou L, Li M, Cao Y, Han J, Lian M, Chen Y, et al. 2022 Nature 610 661 [17] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, et al. 2018 Nat. Phys. 14 437 [18] Huang Y, Zhang H Q, Zhang B L, Hao Y M, Guan H, Zeng M Y, Chen Q F, Lin Y G, Wang Y Z, Cao S Y, Liang K, Fang F, Fang Z J, Li T C and Gao K L 2020 Phys. Rev. A 102 050802 [19] Zhang B L, Huang Y, Zhang H Q, Hao Y M, Zeng M Y, Guan H and Gao K L 2020 Chin. Phys. B 29 074209 [20] Zhang B L, Huang Y, Hao Y M, Zhang H Q, Zeng M Y, Guan H and Gao K L 2020 J. Appl. Phys. 128 143105 [21] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806 [22] Takamoto M, Tanaka Y and Katori H 2022 Appl. Phys. Lett. 120 140502 [23] Schkolnik V, Budker D, Fartmann O, Flambaum V, Hollberg L, Kalaydzhyan T, Kolkowitz S, Krutzik M, Ludlow A, Newbury N et al. 2023 Quan. Sci. Technol. 8 014003 [24] Li L, Ji J W, Ren W, Zhao X, Peng X K, Xiang J F, Lü D S and Liu L 2016 Chin. Phys. B 25 073201 [25] Farolfi A, Trypogeorgos D, Colzi G, Fava E, Lamporesi G and Ferrari G 2019 Rev. Sci. Instrum. 90 115114 [26] Sumnert T J, Pendlebury J M and Smith K F 1987 J. Phys. D Appl. Phys. 20 1095 [27] Jie S F, Li J L, Liu Z C and Mao Y K 2023 Meas. Sci. Technol. 34 095124 [28] Merkel B, Thirumalai K, Tarlton J E, Schäfer V M, Balance C J, Harty T P and Lucas D M 2019 Rev. Sci. Instrum. 90 044702 [29] Xiao K D, Wang L, Guo J, Zhu M H, Zhao X C, Sun X P, Ye C H and Zhou X 2020 Rev. Sci. Instrum. 91 085107 [30] Duan Z X, Wu W T, Lin Y T and Yang S J 2022 Rev. Sci. Instrum. 93 123201 [31] Tommaseo G, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J P 2003 Eur. Phys. J. D 25 113 [32] Barwood G P, Huang G, King S A, Klein H A and Gill P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 035401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|