CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting |
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾)† |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract Based on the Bogoliubov-de Gennes equation and the extended McMillan's Green's function formalism, we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting. We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing, the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned. In particular, anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken, which can be realized by tuning some relevant parameters of the system, including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region, the relative orientations of the a axes in two superconductor leads, or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads. We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
|
Received: 18 October 2022
Revised: 17 March 2023
Accepted manuscript online: 13 April 2023
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
74.78.Na
|
(Mesoscopic and nanoscale systems)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Corresponding Authors:
Liang-Bin Hu
E-mail: lbhu26@126.com
|
Cite this article:
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾) Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting 2023 Chin. Phys. B 32 077201
|
[1] François Konschelle, Tokatly I V and Sebastián Bergeret F 2015 Phys. Rev. B 92 125443 [2] Bujnowski B, Biele R and Bergeret F S 2019 Phys. Rev. B 100 224518 [3] Maistrenko O, Scharf B, Manske D and Hankiewicz E M 2021 Phys. Rev. B 103 054508 [4] Assouline A, Feuillet-Palma C, Bergeal N, Zhang T, Mottaghizadeh A, Zimmers A, Lhuillier E, Marangolo M, Eddrief M, Atkinson P, Aprili M and Aubin H 2019 Nat. Commun. 10 126 [5] Gingrich E C, Niedzielski B M, Glick J A, Wang Y, Miller D L, Loloee R, Pratt W P Jr and Birge N O 2016 Nat. Phys. 12 564 [6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [7] Cayao J and Black-Schaffer A M 2017 Phys. Rev. B 96 155426 [8] Feofanov A K, Oboznov V A, Bol'ginov V V, Lisenfeld J, Poletto S, Ryazanov V V, Rossolenko A N, Khabipov M, Balashov D, Zorin A B, Dmitriev P N, Koshelets V P and Ustinov A V 2010 Nat. Phys. 6 593 [9] Baek B, Rippard W H, Benz S P, Russek S E and Dresselhaus P D 2014 Nat. Commun. 5 3888 [10] Ortlepp T, Ariando, Mielke O, Verwijs C J M, Foo K F K, Rogalla H, Uhlmann F H and Hilgenkamp H 2006 Science 312 1495 [11] Padurariu C and Nazarov Y V 2010 Phys. Rev. B 81 144519 [12] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2012 Phys. Rev. B 86 214519 [13] Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B and Boursier R 2002 Phys. Rev. Lett. 89 137007 [14] Halterman K, Valls O T and Wu C T 2015 Phys. Rev. B 92 174516 [15] Dresselhaus G 1955 Phys. Rev. 100 580 [16] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039 [17] Szombati D B, Nadj-Perge S, Car D, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2016 Nat. Phys. 12 568 [18] Edelstein V M 1990 Solid State Commun. 73 233 [19] Meier L, Salis G, Shorubalko I, Gini E, Schön S and Ensslin K 2007 Nat. Phys. 3 650 [20] Wilamowski Z, Malissa H, Schäffler F and Jantsch W 2007 Phys. Rev. Lett. 98 187203 [21] Li C H, van't Erve O M J, Liu Y, Li L and Jonker B 2016 Sci. Rep. 6 29533 [22] Shen K, Vignale G and Raimondi R 2014 Phys. Rev. Lett. 112 096601 [23] Ganichev S, Ivchenko E, Belḱov V, Tarasenko S, Sollinger M, Weiss D, Wegscheider W and Prettl W 2002 Nature 417 153 [24] Rojas Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attan é J P, De Teresa J M, Magén C and Fert A 2013 Nat. Commun. 4 2944 [25] Bobkova I V, Bobkov A M, Zyuzin A A and Alidoust M 2016 Phys. Rev. B 94 134506 [26] Bobkova I V and Bobkov A M 2017 Phys. Rev. B 95 184518 [27] Costa A and Fabian J 2020 Phys. Rev. B 101 104508 [28] Alidoust M 2020 Phys. Rev. B 101 155123 [29] Alidoust M, Shen C andŽutić I I 2021 Phys Rev B 103 L060503 [30] Bezuglyi E V, Rozhavsky A S, Vagner I D and Wyder P 2002 Phys. Rev. B 66 052508 [31] Buzdin A 2008 Phys. Rev. Lett. 101 107005 [32] Houzet M, Meyer J S and Badiane D M 2013 Phys. Rev. Lett. 111 046401 [33] Béri B, Bardarson J H and Beenakker C W J 2008 Phys. Rev. B 77 045311 [34] Zazunov A, Egger R, Jonckheere T and Martin T 2009 Phys. Rev. Lett. 103 147004 [35] Liu J F and Chan K S 2010 Phys. Rev. B 82 125305 [36] Mal'shukov A G, Sadjina A and Brataas A 2010 Phys. Rev. B 81 060502 [37] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407 [38] Testa G, Sarnelli E, Monaco A, Esposito E, Ejrnaes M, Kang D J, Mennema S H, Tarte E J and Blamire M G 2005 Phys. Rev. B 71 134520 [39] McMillan W L 1968 Phys. Rev. 175 559 [40] Furusaki A and Tsukada M 1991 Solid State Commun. 78 299 [41] Tanaka Y and Kashiwaya S 1997 Phys. Rev. B 56 892 [42] de Gennes P G 1999 Superconductivity of Metals and Alloys (Westview Press, Reading, MA) [43] Zhang W Y 1995 Phys. Rev. B 52 3772 [44] Zhang W Y 1995 Phys. Rev. B 52 12538 [45] Zhang W Y and Wang Z D 2002 Phys. Rev. B 65 144527 [46] Lu B and Tanaka Y K 2018 Philos. Trans. R. Soc. A 376 20150246 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|