CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Long-range adsorbate interactions mediated by two-dimensional Dirac fermions |
Xiaohui Wang(王晓慧)1, Zhen-Guo Fu(付振国)2,†, Zhigang Wang(王志刚)2, Feng Chi(迟锋)3, and Ping Zhang(张平)4,2,‡ |
1 Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China; 4 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We provide here an analytical formalism to describe the indirect interaction between adsorbed atom or molecule pairs mediated by two-dimensional (2D) Dirac fermions. We show that in contrast to the case of traditional 2D electron gas, in the 2D Dirac system, the long-range interaction behaves as 1/r3 decaying Friedel oscillation. This analytical formalism is fully consistent with a tight-binding numerical calculation of honeycomb lattices. Our formalism is suitable for the realistic 2D Dirac materials, such as graphene and surface states of three-dimensional topological insulators.
|
Received: 09 September 2022
Revised: 07 December 2023
Accepted manuscript online: 27 December 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804028 and 12175023) and the Fund from the State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Grant No. PRP/DX-2210). |
Corresponding Authors:
Zhen-Guo Fu, Ping Zhang
E-mail: fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn
|
Cite this article:
Xiaohui Wang(王晓慧), Zhen-Guo Fu(付振国), Zhigang Wang(王志刚), Feng Chi(迟锋), and Ping Zhang(张平) Long-range adsorbate interactions mediated by two-dimensional Dirac fermions 2023 Chin. Phys. B 32 057201
|
[1] Jeandupeux O, Bürgi L, Hirstein A, Brune H and Kern K 1999 Phys. Rev. B 59 15926 [2] Ashcroft N W and Mermin N D 1976 Solid State Physics (HRW, Philadelphia) [3] Hyldgaard P and Persson M 2000 J. Phys.: Condens. Matter 12 L13 [4] Repp J, Moresco F, Meyer G, Rieder K H, Hyldgaard P and Persson M 2000 Phys. Rev. Lett. 85 2981 [5] Knorr N, Brune H, Epple M, Hirstein A, Schneider M A and Kern K 2002 Phys. Rev. B 65 115420 [6] von Hofe T, Kröger J and Berndt R 2006 Phys. Rev. B 73 245434 [7] Nanayakkara S U, Charles E, Sykes H, Fernńndez-Torres L C, Blake M M and Weiss P S 2007 Phys. Rev. Lett. 98 206108 [8] Yokoyama T, Takahashi T, Shinozaki K and Okamoto M 2007 Phys. Rev. Lett. 98 206102 [9] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 Phys. Rev. Lett. 92 016101 [10] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 New J. Phys. 6 1 [11] Ziegler M, Kröger J, Berndt R, Filinov A and Bonitz M 2008 Phys. Rev. B 78 245427 [12] Manai G, Radican K, Delogu F and Shvets I V 2008 Phys. Rev. Lett. 101 165701 [13] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [14] Goerbig M O 2011 Rev. Mod. Phys. 83 1193 [15] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [16] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [17] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Li Z Q, Feng Y, Chen S J X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [18] Chen L, Cheng P and Wu K 2017 J. Phys.: Condens. Matter 29 103001 [19] Cheianov V V and Fal’ko V I 2006 Phys. Rev. Lett. 97 226801 [20] Bena C 2008 Phys. Rev. Lett. 100 076601 [21] Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219 [22] Brihuega I, Mallet P, Bena C, Bose S, Michaelis C, Vitali L, Varchon F, Magaud L, Kern K and Veuillen J Y 2008 Phys. Rev. Lett. 101 206802 [23] de Juan F, Cortijo A, Vozmediano M A H and Cano A 2011 Nat. Phys. 7 810 [24] Settnes M, Power S R, Petersen D H and Jauho A P 2014 Phys. Rev. Lett. 112 096801 [25] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D and Mugarza A 2018 Science 360 199 [26] Song J P and Li A 2022 Chin. Phys. B 31 037401 [27] Fu Z G, Zhang P and Li S S 2011 Appl. Phys. Lett. 99 243110 [28] Fu Z G, Zhang P, Wang Z, Li S S 2011 Phys. Rev. B 84 235438 [29] Lüpke F, Eschbach M, Heider T, Lanius M, Schüffelgen P, Rosen-bach D, von den Driesch N, Cherepanov V, Mussler G, Plucinski L, Grützmacher D, Schneider C M and Voigtländer B 2017 Nat. Commun. 8 15704 [30] Hus S M, Zhang X G, Nguyen G D, Ko W, Baddorf A P, Chen Y P and Li A P 2017 Phys. Rev. Lett. 119 137202 [31] Ko W, Nguyen G D, Kim H, Kim J S, Zhang X G and Li A P 2018 Phys. Rev. Lett. 121 176801 [32] Chen M, Jiang Y, Peng J P, Zhang H, Chang C Z, Feng X, Fu Z G, Zheng F, Zhang P, Wang L L, He K, Ma X and Xue Q K 2019 Sci. Adv. 5 eaaw3988 [33] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 [34] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 [35] Zheng H and Hasan M Z 2018 Adv. Phys. X 3 1466661 [36] Yuan Y, Yang X, Peng L, Wang Z J, Li J, Yi C J, Xian J J, Shi Y G and Fu Y S 2018 Phys. Rev. B 97 165435 [37] Rüßmann P, Weber A P, Glott F, Xu N, Fanciulli M, Muff S, Magrez A, Bügnon P, Berger H, Bode M, Dil J H, Blugel S, Mavropoulos P and Sessi P 2018 Phys. Rev. B 97 075106 [38] Einstein T L and Schrieffer J R 1973 Phys. Rev. B 7 3629 [39] Luo W G, Wang H F, Cai K M, Han W P1, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 067202 [40] Li Z and Wang Z F 2020 Chin. Chin. B 29 107101 [41] Chu Y, Liu L, Ji Y, Tian J, Wu F, Tang J, Yuan Y, Zhao Y, Zan X, Yang R, Watanabe K, Taniguchi T, Shi D, Yang W and Zhang G 2022 Chin. Chin. B 31 107201 [42] Mkhitaryan V V and Mishchenko E G 2012 Phys. Rev. B 86 115442 [43] Chen H H, Su S H, Chang S L, Cheng B Y, Chong C W, Huang J C A and Lin M F 2015 Carbon 93 180 [44] Wang Z Y, Liu D Y and Zou L J 2022 J. Magn. Magn. Mater. 553 169164 [45] Liu C C, Hua Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [46] Wang J, Li W, Cheng P, Song C, Zhang T, Deng P, Chen X, Ma X, He K, Jia J F, Xue Q K and Zhu B F 2011 Phys. Rev. B 84 235447 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|