Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057201    DOI: 10.1088/1674-1056/acae77
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Long-range adsorbate interactions mediated by two-dimensional Dirac fermions

Xiaohui Wang(王晓慧)1, Zhen-Guo Fu(付振国)2,†, Zhigang Wang(王志刚)2, Feng Chi(迟锋)3, and Ping Zhang(张平)4,2,‡
1 Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China;
4 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  We provide here an analytical formalism to describe the indirect interaction between adsorbed atom or molecule pairs mediated by two-dimensional (2D) Dirac fermions. We show that in contrast to the case of traditional 2D electron gas, in the 2D Dirac system, the long-range interaction behaves as 1/r3 decaying Friedel oscillation. This analytical formalism is fully consistent with a tight-binding numerical calculation of honeycomb lattices. Our formalism is suitable for the realistic 2D Dirac materials, such as graphene and surface states of three-dimensional topological insulators.
Keywords:  graphene      Green's function      Dirac fermions  
Received:  09 September 2022      Revised:  07 December 2023      Accepted manuscript online:  27 December 2023
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804028 and 12175023) and the Fund from the State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Grant No. PRP/DX-2210).
Corresponding Authors:  Zhen-Guo Fu, Ping Zhang     E-mail:  fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn

Cite this article: 

Xiaohui Wang(王晓慧), Zhen-Guo Fu(付振国), Zhigang Wang(王志刚), Feng Chi(迟锋), and Ping Zhang(张平) Long-range adsorbate interactions mediated by two-dimensional Dirac fermions 2023 Chin. Phys. B 32 057201

[1] Jeandupeux O, Bürgi L, Hirstein A, Brune H and Kern K 1999 Phys. Rev. B 59 15926
[2] Ashcroft N W and Mermin N D 1976 Solid State Physics (HRW, Philadelphia)
[3] Hyldgaard P and Persson M 2000 J. Phys.: Condens. Matter 12 L13
[4] Repp J, Moresco F, Meyer G, Rieder K H, Hyldgaard P and Persson M 2000 Phys. Rev. Lett. 85 2981
[5] Knorr N, Brune H, Epple M, Hirstein A, Schneider M A and Kern K 2002 Phys. Rev. B 65 115420
[6] von Hofe T, Kröger J and Berndt R 2006 Phys. Rev. B 73 245434
[7] Nanayakkara S U, Charles E, Sykes H, Fernńndez-Torres L C, Blake M M and Weiss P S 2007 Phys. Rev. Lett. 98 206108
[8] Yokoyama T, Takahashi T, Shinozaki K and Okamoto M 2007 Phys. Rev. Lett. 98 206102
[9] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 Phys. Rev. Lett. 92 016101
[10] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 New J. Phys. 6 1
[11] Ziegler M, Kröger J, Berndt R, Filinov A and Bonitz M 2008 Phys. Rev. B 78 245427
[12] Manai G, Radican K, Delogu F and Shvets I V 2008 Phys. Rev. Lett. 101 165701
[13] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[15] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[16] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[17] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Li Z Q, Feng Y, Chen S J X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[18] Chen L, Cheng P and Wu K 2017 J. Phys.: Condens. Matter 29 103001
[19] Cheianov V V and Fal’ko V I 2006 Phys. Rev. Lett. 97 226801
[20] Bena C 2008 Phys. Rev. Lett. 100 076601
[21] Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219
[22] Brihuega I, Mallet P, Bena C, Bose S, Michaelis C, Vitali L, Varchon F, Magaud L, Kern K and Veuillen J Y 2008 Phys. Rev. Lett. 101 206802
[23] de Juan F, Cortijo A, Vozmediano M A H and Cano A 2011 Nat. Phys. 7 810
[24] Settnes M, Power S R, Petersen D H and Jauho A P 2014 Phys. Rev. Lett. 112 096801
[25] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D and Mugarza A 2018 Science 360 199
[26] Song J P and Li A 2022 Chin. Phys. B 31 037401
[27] Fu Z G, Zhang P and Li S S 2011 Appl. Phys. Lett. 99 243110
[28] Fu Z G, Zhang P, Wang Z, Li S S 2011 Phys. Rev. B 84 235438
[29] Lüpke F, Eschbach M, Heider T, Lanius M, Schüffelgen P, Rosen-bach D, von den Driesch N, Cherepanov V, Mussler G, Plucinski L, Grützmacher D, Schneider C M and Voigtländer B 2017 Nat. Commun. 8 15704
[30] Hus S M, Zhang X G, Nguyen G D, Ko W, Baddorf A P, Chen Y P and Li A P 2017 Phys. Rev. Lett. 119 137202
[31] Ko W, Nguyen G D, Kim H, Kim J S, Zhang X G and Li A P 2018 Phys. Rev. Lett. 121 176801
[32] Chen M, Jiang Y, Peng J P, Zhang H, Chang C Z, Feng X, Fu Z G, Zheng F, Zhang P, Wang L L, He K, Ma X and Xue Q K 2019 Sci. Adv. 5 eaaw3988
[33] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[34] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105
[35] Zheng H and Hasan M Z 2018 Adv. Phys. X 3 1466661
[36] Yuan Y, Yang X, Peng L, Wang Z J, Li J, Yi C J, Xian J J, Shi Y G and Fu Y S 2018 Phys. Rev. B 97 165435
[37] Rüßmann P, Weber A P, Glott F, Xu N, Fanciulli M, Muff S, Magrez A, Bügnon P, Berger H, Bode M, Dil J H, Blugel S, Mavropoulos P and Sessi P 2018 Phys. Rev. B 97 075106
[38] Einstein T L and Schrieffer J R 1973 Phys. Rev. B 7 3629
[39] Luo W G, Wang H F, Cai K M, Han W P1, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 067202
[40] Li Z and Wang Z F 2020 Chin. Chin. B 29 107101
[41] Chu Y, Liu L, Ji Y, Tian J, Wu F, Tang J, Yuan Y, Zhao Y, Zan X, Yang R, Watanabe K, Taniguchi T, Shi D, Yang W and Zhang G 2022 Chin. Chin. B 31 107201
[42] Mkhitaryan V V and Mishchenko E G 2012 Phys. Rev. B 86 115442
[43] Chen H H, Su S H, Chang S L, Cheng B Y, Chong C W, Huang J C A and Lin M F 2015 Carbon 93 180
[44] Wang Z Y, Liu D Y and Zou L J 2022 J. Magn. Magn. Mater. 553 169164
[45] Liu C C, Hua Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[46] Wang J, Li W, Cheng P, Song C, Zhang T, Deng P, Chen X, Ma X, He K, Jia J F, Xue Q K and Zhu B F 2011 Phys. Rev. B 84 235447
[1] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer—bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[2] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[3] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[4] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[5] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!