Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066103    DOI: 10.1088/1674-1056/acbc6a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Er intercalation and its impact on transport properties of epitaxial graphene

Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群)
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
Abstract  Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and SiC substrate. In this work, atomically flat epitaxial graphene is prepared on 4H-SiC(0001) using the flash heating method in an ultrahigh vacuum system. Scanning tunneling microscopy, Raman spectroscopy and electrical transport measurements are utilized to investigate surface morphological structures and transport properties of pristine and Er-intercalated epitaxial graphene. It is found that Er atoms are intercalated underneath the graphene layer after annealing at 900 ℃, and the intercalation sites of Er atoms are located mainly at the buffer-layer/monolayer-graphene interface in monolayer domains. We also report the different behaviors of Er intercalation in monolayer and bilayer regions, and the experimental results show that the diffusion barrier for Er intercalated atoms in the buffer-layer /monolayer interface is at least 0.2 eV higher than that in the first/second graphene-layer interface. The appearance of Er atoms is found to have distinct impacts on the electronic transports of epitaxial graphene on SiC(0001).
Keywords:  epitaxial graphene      intercalation      scanning tunneling microscopy (STM)      electrical transport  
Received:  31 October 2022      Revised:  24 January 2023      Accepted manuscript online:  16 February 2023
PACS:  61.48.Gh (Structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  72.80.Vp (Electronic transport in graphene)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Fund: Project supported by the Natural Science Foundation of Shanghai Science and Technology Committee (Grant No. 18ZR1403300).
Corresponding Authors:  Qun Cai     E-mail:  qcai@fudan.edu.cn

Cite this article: 

Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群) Er intercalation and its impact on transport properties of epitaxial graphene 2023 Chin. Phys. B 32 066103

[1] Riedl C, Coletti C, Iwasaki T, et al.2009 Phys. Rev. Lett. 103 246804
[2] Speck.F, Jobst J, Fromm F, et al.2011 Appl. Phys. Lett. 99 122106
[3] Rajput S, Li Y Y and Li L2014 Appl. Phys. Lett. 104 041908
[4] Dharmaraj P, Justin Jesuraj P and Jeganathan K2016 Appl. Phys. Lett. 108 051605
[5] Forti S, Emtsev K V, Coletti C, et al.2011 Phys. Rev. B 84 125449
[6] Fiori S, Murata Y, Veronesi S, et al.2017 Phys. Rev. B 96 125429
[7] Xia C, Watcharinyanon S, Zakharov A A, et al.2012 Phys. Rev. B 85 045418
[8] Yagyu K, Tajiri T, Kohno A, et al.2014 Appl. Phys. Lett. 104 053115
[9] Marchenko D, Varykhalov A, Sánchez-Barriga J, et al.2016 Appl. Phys. Lett. 108 172405
[10] Premlal B, Cranney M, Vonau F, et al.2009 Appl. Phys. Lett. 94 263115
[11] Warmuth J, Bruix A, Michiardi M, et al.2016 Phys. Rev. B 93 165437
[12] Kim M, Tringides M C, Hershberger M T, et al.2017 Carbon 123 93
[13] Watcharinyanon S, Johansson L I, Xia C, et al.2013 Graphene 2 66
[14] Schumacher S, Huttmann F, Petrović M, et al.2014 Phys. Rev. B 90 235437
[15] Bentley P D, Bird T W, Graham A P J, et al.2021 AIP Adv. 11 025314
[16] Baglin J E, d'Heurle F M and Petersson C S1980 Appl. Phys. Lett. 36 594
[17] Chen G, Wan J, Yang J, et al.2002 Surf. Sci. 513 203
[18] Duan Y, Kong W X, Zhang J Z, et al.2022 J. Appl. Phys. 132 135701
[19] Varchon F, Mallet P, Veuillen J Y, et al.2008 Phys. Rev. B 77 235412
[20] Goler S, Coletti C, Piazza V, et al.2013 Carbon 51 249
[21] Hu T W, Ma F, Ma D Y, et al.2013 Appl. Phys. Lett. 102 171910
[22] Liu X J, Wang C Z, Hupalo M, et al.2012 Phys. Chem. Chem. Phys. 14 9157
[23] Liu X J, Wang C Z, Hupalo M, et al.2013 Crystals 3 79
[24] Wang W X, Wei Y W, Li S Y, et al.2018 Phys. Rev. B 97 085407
[25] Guo H, Lu H L, Huang L, et al.2017 Acta Phys. Sin. 66 216803 (in Chinese)
[26] Zhu Y, Zhou W, Wang S, et al.2006 J. Appl. Phys. 100 114312
[27] Kunc J, Hu Y, Palmer J, et al.2013 Appl. Phys. Lett. 103 201911
[28] de Heer W A, Berger C, Wu X, et al.2010 J. Phys. D: Appl. Phys. 43 374007
[29] Suemitsu M and Fukidome H2010 J. Phys. D: Appl. Phys. 43 374012
[30] Ni Z H, Chen W, Fan X F, et al.2008 Phys. Rev. B 77 115416
[31] Casiraghi C, Pisana S, Novoselov K S, et al.2007 Appl. Phys. Lett. 91 233108
[32] Das A, Pisana S, Chakraborty B, et al.2008 Nat. Nanotechnol. 3 210
[33] Schumacher S, Forster D F, Rosner M, et al.2013 Phys. Rev. Lett. 110 086111
[34] Yu C, Liu Q, Li J, et al.2014 Appl. Phys. Lett. 105 183105
[1] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[2] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[3] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[4] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[5] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[6] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[7] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[8] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[9] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[10] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[11] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[12] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[13] Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation
Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(7): 078103.
[14] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[15] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
No Suggested Reading articles found!