CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Er intercalation and its impact on transport properties of epitaxial graphene |
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群)† |
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and SiC substrate. In this work, atomically flat epitaxial graphene is prepared on 4H-SiC(0001) using the flash heating method in an ultrahigh vacuum system. Scanning tunneling microscopy, Raman spectroscopy and electrical transport measurements are utilized to investigate surface morphological structures and transport properties of pristine and Er-intercalated epitaxial graphene. It is found that Er atoms are intercalated underneath the graphene layer after annealing at 900 ℃, and the intercalation sites of Er atoms are located mainly at the buffer-layer/monolayer-graphene interface in monolayer domains. We also report the different behaviors of Er intercalation in monolayer and bilayer regions, and the experimental results show that the diffusion barrier for Er intercalated atoms in the buffer-layer /monolayer interface is at least 0.2 eV higher than that in the first/second graphene-layer interface. The appearance of Er atoms is found to have distinct impacts on the electronic transports of epitaxial graphene on SiC(0001).
|
Received: 31 October 2022
Revised: 24 January 2023
Accepted manuscript online: 16 February 2023
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
Fund: Project supported by the Natural Science Foundation of Shanghai Science and Technology Committee (Grant No. 18ZR1403300). |
Corresponding Authors:
Qun Cai
E-mail: qcai@fudan.edu.cn
|
Cite this article:
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群) Er intercalation and its impact on transport properties of epitaxial graphene 2023 Chin. Phys. B 32 066103
|
[1] Riedl C, Coletti C, Iwasaki T, et al.2009 Phys. Rev. Lett. 103 246804 [2] Speck.F, Jobst J, Fromm F, et al.2011 Appl. Phys. Lett. 99 122106 [3] Rajput S, Li Y Y and Li L2014 Appl. Phys. Lett. 104 041908 [4] Dharmaraj P, Justin Jesuraj P and Jeganathan K2016 Appl. Phys. Lett. 108 051605 [5] Forti S, Emtsev K V, Coletti C, et al.2011 Phys. Rev. B 84 125449 [6] Fiori S, Murata Y, Veronesi S, et al.2017 Phys. Rev. B 96 125429 [7] Xia C, Watcharinyanon S, Zakharov A A, et al.2012 Phys. Rev. B 85 045418 [8] Yagyu K, Tajiri T, Kohno A, et al.2014 Appl. Phys. Lett. 104 053115 [9] Marchenko D, Varykhalov A, Sánchez-Barriga J, et al.2016 Appl. Phys. Lett. 108 172405 [10] Premlal B, Cranney M, Vonau F, et al.2009 Appl. Phys. Lett. 94 263115 [11] Warmuth J, Bruix A, Michiardi M, et al.2016 Phys. Rev. B 93 165437 [12] Kim M, Tringides M C, Hershberger M T, et al.2017 Carbon 123 93 [13] Watcharinyanon S, Johansson L I, Xia C, et al.2013 Graphene 2 66 [14] Schumacher S, Huttmann F, Petrović M, et al.2014 Phys. Rev. B 90 235437 [15] Bentley P D, Bird T W, Graham A P J, et al.2021 AIP Adv. 11 025314 [16] Baglin J E, d'Heurle F M and Petersson C S1980 Appl. Phys. Lett. 36 594 [17] Chen G, Wan J, Yang J, et al.2002 Surf. Sci. 513 203 [18] Duan Y, Kong W X, Zhang J Z, et al.2022 J. Appl. Phys. 132 135701 [19] Varchon F, Mallet P, Veuillen J Y, et al.2008 Phys. Rev. B 77 235412 [20] Goler S, Coletti C, Piazza V, et al.2013 Carbon 51 249 [21] Hu T W, Ma F, Ma D Y, et al.2013 Appl. Phys. Lett. 102 171910 [22] Liu X J, Wang C Z, Hupalo M, et al.2012 Phys. Chem. Chem. Phys. 14 9157 [23] Liu X J, Wang C Z, Hupalo M, et al.2013 Crystals 3 79 [24] Wang W X, Wei Y W, Li S Y, et al.2018 Phys. Rev. B 97 085407 [25] Guo H, Lu H L, Huang L, et al.2017 Acta Phys. Sin. 66 216803 (in Chinese) [26] Zhu Y, Zhou W, Wang S, et al.2006 J. Appl. Phys. 100 114312 [27] Kunc J, Hu Y, Palmer J, et al.2013 Appl. Phys. Lett. 103 201911 [28] de Heer W A, Berger C, Wu X, et al.2010 J. Phys. D: Appl. Phys. 43 374007 [29] Suemitsu M and Fukidome H2010 J. Phys. D: Appl. Phys. 43 374012 [30] Ni Z H, Chen W, Fan X F, et al.2008 Phys. Rev. B 77 115416 [31] Casiraghi C, Pisana S, Novoselov K S, et al.2007 Appl. Phys. Lett. 91 233108 [32] Das A, Pisana S, Chakraborty B, et al.2008 Nat. Nanotechnol. 3 210 [33] Schumacher S, Forster D F, Rosner M, et al.2013 Phys. Rev. Lett. 110 086111 [34] Yu C, Liu Q, Li J, et al.2014 Appl. Phys. Lett. 105 183105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|