Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046803    DOI: 10.1088/1674-1056/ac80b3
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Polarization Raman spectra of graphene nanoribbons

Wangwei Xu(许望伟)1,†, Shijie Sun(孙诗杰)1,†, Muzi Yang(杨慕紫)2, Zhenliang Hao(郝振亮)1, Lei Gao(高蕾)3, Jianchen Lu(卢建臣)1, Jiasen Zhu(朱嘉森)2, Jian Chen(陈建)2,‡, and Jinming Cai(蔡金明)1,§
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China;
2 School of Materials Science and Engineering, Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China;
3 Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China
Abstract  The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons (GNRs), which bears great potential in electronic applications. Here, we synthesize armchair graphene nanoribbons (AGNRs) and chevron-type graphene nanoribbons (CGNRs) array on a vicinal Au(11 11 12) surface using 10,10'-dibromo-9,9'-bianthracene (DBBA) and 6,12-dibromochrysene (DBCh) as precursors, respectively. This process creates spatially well-aligned GNRs, as characterized by scanning tunneling microscopy. AGNRs show strong Raman linear polarizability for application in optical modulation devices. Different from the distinct polarization of AGNRs, only weak polarization exists in CGNRs polarized Raman spectrum, which suggests that the presence of the zigzag boundary in the nanoribbon attenuates the polarization rate as an important factor affecting the polarization. We analyze the Raman activation mode of CGNRs using the peak polarization to expand the application of the polarization Raman spectroscopy in nanoarray analysis.
Keywords:  graphene nanoribbons      polarization Raman spectroscopy      scanning tunneling microscopy  
Received:  29 April 2022      Revised:  23 June 2022      Accepted manuscript online:  13 July 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  74.25.nd (Raman and optical spectroscopy)  
  78.67.Wj (Optical properties of graphene)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61901200), the Yunnan Fundamental Research Projects (Grant Nos. 2019FD041, 202101AU070043, 202101AV070008, and 202101AW070010), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. NXDB30010000), and the Dongguan Innovation Research Team Program.
Corresponding Authors:  Jian Chen, Jinming Cai     E-mail:  puscj@mail.sysu.edu.cn;j.cai@kust.edu.cn

Cite this article: 

Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明) Polarization Raman spectra of graphene nanoribbons 2023 Chin. Phys. B 32 046803

[1] Cai J, Ruffieux- P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470
[2] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896
[3] Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P and Fasel R 2018 Nature 560 209
[4] Driver S M, Toomes R L and Woodruff D P 2016 Surf. Sci. 646 114
[5] Sun S, Guan Y, Hao Z, Ruan Z, Zhang H, Lu J, Gao L, Zuo X and Cai J 2022 Nano Res. 15 653
[6] Yang H, Cao Y, Gao Y, Fu Y, Huang L, Liu J, Feng X, Du S and Gao H-J 2021 Chin. Phys. B 30 056802
[7] Wang X Y, Urgel J I, Barin G B, Eimre K, Di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X, Fasel R, Mullen K and Narita A 2018 J. Am. Chem. Soc. 140 9104
[8] Su X, Xue Z, Li G and Yu P 2018 Nano Lett. 18 5744
[9] Slota M, Keerthi A, Myers W K, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert C J, Narita A, Mullen K and Bogani L 2018 Nature 557 691
[10] Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli C A, Sode H, Fasel R, Feng X, Mullen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E and Ruffieux P 2014 Nat. Commun. 5 4253
[11] Sun K, Ji P, Zhang J, Wang J, Li X, Xu X, Zhang H and Chi L 2019 Small 15 1804526
[12] Qin J, Xia S, Jia K, Wang C T, Tang T T, Lu H P, Zhang L, Zhou P H, Peng B, Deng L J and Bi L 2018 Apl Photonics 3 016103
[13] Ohtomo M, Sekine Y, Hibino H and Yamamoto H 2018 Appl. Phys. Lett. 112 021602
[14] Overbeck J, Barin G B, Daniels C, Perrin M L, Liang L B, Braun O, Darawish R, Burkhardt B, Dumslaff T, Wang X Y, Narita A, Mullen K, Meunier V, Fasel R, Calame M and Ruffieux P 2019 Phys. Status Solidi B 256 1900343
[15] Linden S, Zhong D, Timmer A, Aghdassi N, Franke J H, Zhang H, Feng X, Mullen K, Fuchs H, Chi L and Zacharias H 2012 Phys. Rev. Lett. 108 216801
[16] Passi V, Gahoi A, Senkovskiy B V, Haberer D, Fischer F R, Gruneis A and Lemme M C 2018 ACS Appl. Mater. Interfaces 10 9900
[17] Cong C, Yu T and Wang H 2010 ACS Nano 4 3175
[18] Ferreira E H M, Moutinho M V O, Stavale F, Lucchese M M, Capaz R B, Achete C A and Jorio A 2010 Phys. Rev. B 82 125429
[19] Verzhbitskiy I A, Corato M D, Ruini A, Molinari E, Narita A, Hu Y, Schwab M G, Bruna M, Yoon D, Milana S, Feng X, Mullen K, Ferrari A C, Casiraghi C and Prezzi D 2016 Nano Lett. 16 3442
[20] Annese E, Viol C E, Zhou B, Fujii J, Vobornik I, Baldacchini C, Betti M G and Rossi G 2007 Surf. Sci. 601 4242
[21] Luo G F, Wang L, Li H, Qin R, Zhou J, Li L Z, Gao Z X, Mei W N, Lu J and Nagase S 2011 J. Phys. Chem. C 115 24463
[22] Fritton M, Duncan D A, Deimel P S, Rastgoo-Lahrood A, Allegretti F, Barth J V, Heckl W M, Bjork J and Lackinger M 2019 J. Am. Chem. Soc. 141 4824
[23] Senkovskiy B V, Pfeiffer M, Alavi S K, Bliesener A, Zhu J, Michel S, Fedorov A V, German R, Hertel D, Haberer D, Petaccia L, Fischer F R, Meerholz K, van Loosdrecht P H M, Lindfors K and Gruneis A 2017 Nano Lett. 17 4029
[24] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[25] Sasaki K, Yamamoto M, Murakami S, Saito R, Dresselhaus M S, Takai K, Mori T, Enoki T and Wakabayashi K 2009 Phys. Rev. B 80 155450
[26] Saito R, Furukawa M, Dresselhaus G and Dresselhaus M S 2010 J. Phys. Condens Matter 22 334203
[27] Gillen R, Mohr M and Maultzsch J 2010 Phys. Status Solidi B 247 2941
[28] Vandescuren M, Hermet P, Meunier V, Henrard L and Lambin P 2008 Phys. Rev. B 78 195401
[29] Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. B 94 075104
[30] Frank O, Mohr M, Maultzsch J, Thomsen C, Riaz I, Jalil R, Novoselov K S, Tsoukleri G, Parthenios J, Papagelis K, Kavan L and Galiotis C 2011 ACS Nano 5 2231
[31] Ferrari A C and Rbertson J 2000 Phys. Rev. B 61 14095
[32] Mohiuddin T, Lombardo A, Nair R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D, Galiotis C and Marzari N 2009 Phys. Rev. B 79 205433
[1] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[4] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[7] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[8] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[9] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[10] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[11] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[12] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[13] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[14] Realization of semiconducting Cu2Se by direct selenization of Cu(111)
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(11): 116802.
[15] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
No Suggested Reading articles found!