CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermal spin molecular logic gates modulated by an electric field |
Xingyi Tan(谭兴毅)1,†, Qiang Li(李强)2, and Dahua Ren(任达华)2 |
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China; 2 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China |
|
|
Abstract Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.
|
Received: 02 June 2022
Revised: 02 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant No. 11864011) and in part by Youth Project of Scientific and technological Research Program of Chongqing Education Commission (Grant No. KJQN202101204). |
Corresponding Authors:
Xingyi Tan
E-mail: tanxy@sanxiau.edu.cn
|
Cite this article:
Xingyi Tan(谭兴毅), Qiang Li(李强), and Dahua Ren(任达华) Thermal spin molecular logic gates modulated by an electric field 2023 Chin. Phys. B 32 057101
|
[1] Moore G E 1965 Electronics 38 114 [2] Mathur N 2002 Nature 419 573 [3] de Silva P, Gunaratne N and McCoy C 1993 Nature 364 42 [4] Mikhail F B 2017 Russ. Chem. Rev. 86 181 [5] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B and Zhang N 2017 Nat. Mater. 16 712 [6] Yang M, Deng Y, Wu Z, Cai K, Edmonds K W, Li Y, Sheng Y, Wang S, Cui Y and Luo J 2019 IEEE Electron Dev. Lett. 40 1554 [7] Zhang N, Cao Y, Li Y, Rushforth A W, Ji Y, Zheng H and Wang K 2020 Adv. Electron. Mater. 6 2000296 [8] Cao Y, Rushforth A, Sheng Y, Zheng H and Wang K 2019 Adv. Fun. Mater. 29 1808104 [9] Zhou J, Zhao T, Shu X, Liu L, Lin W, Chen S, Shi S, Yan X, Liu X and Chen J 2021 Adv. Mater. 33 2103672 [10] Rinaldi G 2010 Assembly Automation 30 2 [11] Sanvito S 2011 Chem. Soc. Rev. 40 3336 [12] Wolf S, Awschalom D, Buhrman R, Daughton J, von Molnár V S, Roukes M, Chtchelkanova A Y and Treger D 2001 Science 294 1488 [13] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778 [14] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nat. Mater. 9 898 [15] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894 [16] Zeng M, Feng Y and Liang G 2011 Nano Lett. 11 1369 [17] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391 [18] Fu H, Wu D D, Zhang Z Q and Gu L 2015 Sci. Rep. 5 10547 [19] Sierra J F, Neumann I, Cuppens J, Raes B, Costache M V and Valenzuela S O 2018 Nat. Nanotechnol. 13 107 [20] Zhao P and Chen G 2019 Chem. Phys. Lett. 733 136671 [21] Zhao P 2019 J. Mag. Mag. Mater. 489 165381 [22] Zhao P and Chen G 2018 J. Chem. Phys. 149 134305 [23] Zhang X Y and Zhao P 2020 Phys. Lett. A 384 126256 [24] He H B and Zhao P 2020 Physica E 121 114130 [25] Guo Y, Zhao P and Chen G 2022 Chin. Phys. B 31 047202 [26] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [27] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Conden. Matt. 14 2745 [28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Imry Y and Landauer R 1999 Rev. Mod. Phys. 71 S306 [31] Vergniory M, Granadino-Roldan J, Garcia-Lekue A and Wang L W 2010 Appl. Phys. Lett. 97 262114 [32] Tobisu M and Chatani N 2014 Science 343 850 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|