Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057101    DOI: 10.1088/1674-1056/ac89e5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal spin molecular logic gates modulated by an electric field

Xingyi Tan(谭兴毅)1,†, Qiang Li(李强)2, and Dahua Ren(任达华)2
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China;
2 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.
Keywords:  thermal spin molecular logic gates      electric field      single-molecule  
Received:  02 June 2022      Revised:  02 August 2022      Accepted manuscript online:  16 August 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.uj (III-V and II-VI semiconductors)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant No. 11864011) and in part by Youth Project of Scientific and technological Research Program of Chongqing Education Commission (Grant No. KJQN202101204).
Corresponding Authors:  Xingyi Tan     E-mail:  tanxy@sanxiau.edu.cn

Cite this article: 

Xingyi Tan(谭兴毅), Qiang Li(李强), and Dahua Ren(任达华) Thermal spin molecular logic gates modulated by an electric field 2023 Chin. Phys. B 32 057101

[1] Moore G E 1965 Electronics 38 114
[2] Mathur N 2002 Nature 419 573
[3] de Silva P, Gunaratne N and McCoy C 1993 Nature 364 42
[4] Mikhail F B 2017 Russ. Chem. Rev. 86 181
[5] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B and Zhang N 2017 Nat. Mater. 16 712
[6] Yang M, Deng Y, Wu Z, Cai K, Edmonds K W, Li Y, Sheng Y, Wang S, Cui Y and Luo J 2019 IEEE Electron Dev. Lett. 40 1554
[7] Zhang N, Cao Y, Li Y, Rushforth A W, Ji Y, Zheng H and Wang K 2020 Adv. Electron. Mater. 6 2000296
[8] Cao Y, Rushforth A, Sheng Y, Zheng H and Wang K 2019 Adv. Fun. Mater. 29 1808104
[9] Zhou J, Zhao T, Shu X, Liu L, Lin W, Chen S, Shi S, Yan X, Liu X and Chen J 2021 Adv. Mater. 33 2103672
[10] Rinaldi G 2010 Assembly Automation 30 2
[11] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[12] Wolf S, Awschalom D, Buhrman R, Daughton J, von Molnár V S, Roukes M, Chtchelkanova A Y and Treger D 2001 Science 294 1488
[13] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[14] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nat. Mater. 9 898
[15] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[16] Zeng M, Feng Y and Liang G 2011 Nano Lett. 11 1369
[17] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[18] Fu H, Wu D D, Zhang Z Q and Gu L 2015 Sci. Rep. 5 10547
[19] Sierra J F, Neumann I, Cuppens J, Raes B, Costache M V and Valenzuela S O 2018 Nat. Nanotechnol. 13 107
[20] Zhao P and Chen G 2019 Chem. Phys. Lett. 733 136671
[21] Zhao P 2019 J. Mag. Mag. Mater. 489 165381
[22] Zhao P and Chen G 2018 J. Chem. Phys. 149 134305
[23] Zhang X Y and Zhao P 2020 Phys. Lett. A 384 126256
[24] He H B and Zhao P 2020 Physica E 121 114130
[25] Guo Y, Zhao P and Chen G 2022 Chin. Phys. B 31 047202
[26] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[27] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Conden. Matt. 14 2745
[28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Imry Y and Landauer R 1999 Rev. Mod. Phys. 71 S306
[31] Vergniory M, Granadino-Roldan J, Garcia-Lekue A and Wang L W 2010 Appl. Phys. Lett. 97 262114
[32] Tobisu M and Chatani N 2014 Science 343 850
[1] Single-electron transport in H2O@C60 single-molecule transistors
Bowen Liu(刘博文), Jun Chen(陈俊), Yiping Ouyang(欧阳一平), Minhao Zhang(张敏昊), Yuan-Zhi Tan(谭元植), and Fengqi Song(宋凤麒). Chin. Phys. B, 2023, 32(6): 063601.
[2] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[3] Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection
Xiaoxia Li(李晓霞), Xiaopeng Xue(薛小鹏), Dongjie Liu(刘栋杰), Tianyi Yu(余天意), Qianqian He(何倩倩), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2023, 32(4): 048701.
[4] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[5] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[6] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[7] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[8] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[9] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[10] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[11] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[12] Single-molecular methodologies for the physical biology of protein machines
Shuang Wang(王爽), Ying Lu(陆颖), and Ming Li(李明). Chin. Phys. B, 2022, 31(12): 128702.
[13] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Bias-controlled spin memory and spin injector scheme in the tunneling junction with a single-molecule magnet
Zheng-Zhong Zhang(张正中) and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(6): 067501.
No Suggested Reading articles found!