ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system |
Zi-Hao Zhu(朱子豪)1,†, Bo-Yun Wang(王波云)1,2,†,‡, Xiang Yan(闫香)1, Yang Liu(刘洋)1, Qing-Dong Zeng(曾庆栋)1, Tao Wang(王涛)2, and Hua-Qing Yu(余华清)1 |
1 School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China; 2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract A dynamically tunable multiband plasmon-induced transparency (PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide. Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright-dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between 161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact, multiband, and dynamic tunable.
|
Received: 11 May 2022
Revised: 01 July 2022
Accepted manuscript online: 05 July 2022
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
81.05.ue
|
(Graphene)
|
|
47.11.Bc
|
(Finite difference methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122 and 61705064), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672 and 2021CFB607), the Project of the Hubei Provincial Department of Education, China (Grant Nos. B2021215 and T201617), and the Natural Science Foundation of Xiaogan City, China (Grant Nos. XGKJ2021010002 and XGKJ2021010003). |
Corresponding Authors:
Bo-Yun Wang
E-mail: wangboyun@alumni.hust.edu.cn
|
Cite this article:
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清) Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system 2022 Chin. Phys. B 31 084210
|
[1] Yang X, Yu M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 173902 [2] Harris S E 1997 Phys. Today 50 36 [3] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594 [4] Liu J H, Yu Y F and Zhang Z M 2019 Opt. Express 27 15382 [5] Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601 [6] Li H, Wang L, Liu J, Huang Z, Sun B and Zhai X 2013 Appl. Phys. Lett. 103 211104 [7] Fan C Z, Jia Y L, Ren P W and Jia W 2021 J. Phys. D:Appl. Phys. 54 035107 [8] Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902 [9] Zhou L, Ye T and Chen J 2011 Opt. Lett. 36 13 [10] Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J and Yi Z 2020 Opt. Express 28 36771 [11] Ge J H, You C L, Feng H, Li X M, Wang M, Dong L F, Veronis G and Yun M J 2020 Opt. Express 28 31781 [12] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758 [13] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401 [14] Zhan S P, Kong D, Cao G T, He Z H, Wang Y, Xu G J and Li H J 2013 Solid State Commun. 174 50 [15] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J and Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107 [16] Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z and Zhao R T 2015 Opt. Express 23 6554 [17] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y and Xu K 2018 J. Phys. D:Appl. Phys. 51 055103 [18] Li H J, Wang L L and Zhai X 2016 IEEE Photon. Technol. Lett. 28 1454 [19] He Z H, Ren X C, Bai S M, Li H J, Cao D M and Li G 2018 Plasmonics 13 2255 [20] Zheng Z P, Luo Y, Yang H, Yi Z, Zhang J G, Song Q J, Yang W X, Liu C, Wu X W and Wu P H 2022 Phys. Chem. Chem. Phys. 24 8846 [21] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C and Wu K 2019 Opt. Express 27 3598 [22] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H and Zhou F Q 2019 Opt. Express 27 13884 [23] Sun C, Si J N, Dong Z W and Deng X X 2016 Opt. Express 24 11466 [24] Chai Z, Hu X, Yang H and Gong Q 2016 Appl. Phys. Lett. 108 151104 [25] Zhan S, Li H, Cao G, He Z, Li B and Yang H 2014 J. Phys. D:Appl. Phys. 47 205101 [26] Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 J. Phys. D:Appl. Phys. 48 235102 [27] Zhu Y, Hu X, Fu Y, Yang H and Gong Q 2013 Sci. Rep. 3 2338 [28] Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 J. Lightwave Technol. 33 3083 [29] Celis A, Nair M, Taleb-Ibrahimi A, Conrad E, Berger C, Heer W and Tejeda A 2016 J. Phys. D:Appl. Phys. 49 143001 [30] Lu H 2015 Appl. Phys. B 118 61 [31] Wang L, Li W and Jiang X Y 2015 Opt. Lett. 40 2325 [32] Noual A, Amrani M, Boudouti E H E, Pennec Y and Djafari-Rouhani D 2019 Materials Today:Proceedings 13 1076 [33] Zhao H L, Ren Y, Fang L and Lin H 2020 Results in Physics 16 102971 [34] Saraswat V, Jacobberger R M and Arnold M S 2021 ACS Nano 15 3674 [35] Wang X R and Dai H J 2010 Nat. Chem. 2 661 [36] Wang Q, Kitauta R, Suzuki S, Miyauchi Y, Matsuda K, Yamamoto Y, Arai S and Shinohara H 2016 ACS Nano 10 1475 [37] Li F, Jackson S D, Grillet C, Magi E, Hudson D, Madden S J, Moghe Y, Brien C O, Read A, Duvall S G, Atanackovic P, Eggleton B J and Moss D J 2011 Opt. Express 19 15212 [38] Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y and Li H J 2019 J. Phys. D:Appl. Phys. 52 025104 [39] Xu H, Li H, He Z, Chen Z, Zheng M and Zhao M 2017 Opt. Express 25 20780 [40] Wei B Z and Jian S S 2017 J. Phys. D:Appl. Phys. 50 355101 [41] Wang T, Zhang Y, Hong Z and Han Z 2014 Opt. Express 22 21529 [42] Lu H, Liu X M, Mao D, Gong Y K and Wang G X 2011 Opt. Lett. 36 3233 [43] Lu H, Liu X M and Mao D 2012 Phys. Rev. A 85 053803 [44] Ren T X and Chen L 2019 Opt. Lett. 44 5446 [45] Neubert T J, Wehrhold M, Kaya N S and Balasubramanian K 2020 Nanotechnology 31 405201 [46] Zhou F Q, Wang Y Q, Zhang X, Wang J W, Liu Z M, Luo X, Zhang Z B and Gao E D 2021 J. Phys. D:Appl. Phys. 54 054002 [47] Zheng Z P, Zheng Y, Luo Y, Yi Z, Zhang J G, Liu Z M, Yang W X, Yu Y, Wu X W and Wu P H 2022 Phys. Chem. Chem. Phys. 24 2527 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|