Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084210    DOI: 10.1088/1674-1056/ac7e39
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system

Zi-Hao Zhu(朱子豪)1,†, Bo-Yun Wang(王波云)1,2,†,‡, Xiang Yan(闫香)1, Yang Liu(刘洋)1, Qing-Dong Zeng(曾庆栋)1, Tao Wang(王涛)2, and Hua-Qing Yu(余华清)1
1 School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China;
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A dynamically tunable multiband plasmon-induced transparency (PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide. Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright-dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between 161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact, multiband, and dynamic tunable.
Keywords:  plasmon-induced transparency (PIT)      graphene      group index      rectangle cavities  
Received:  11 May 2022      Revised:  01 July 2022      Accepted manuscript online:  05 July 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  81.05.ue (Graphene)  
  47.11.Bc (Finite difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122 and 61705064), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672 and 2021CFB607), the Project of the Hubei Provincial Department of Education, China (Grant Nos. B2021215 and T201617), and the Natural Science Foundation of Xiaogan City, China (Grant Nos. XGKJ2021010002 and XGKJ2021010003).
Corresponding Authors:  Bo-Yun Wang     E-mail:  wangboyun@alumni.hust.edu.cn

Cite this article: 

Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清) Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system 2022 Chin. Phys. B 31 084210

[1] Yang X, Yu M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 173902
[2] Harris S E 1997 Phys. Today 50 36
[3] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[4] Liu J H, Yu Y F and Zhang Z M 2019 Opt. Express 27 15382
[5] Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601
[6] Li H, Wang L, Liu J, Huang Z, Sun B and Zhai X 2013 Appl. Phys. Lett. 103 211104
[7] Fan C Z, Jia Y L, Ren P W and Jia W 2021 J. Phys. D:Appl. Phys. 54 035107
[8] Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[9] Zhou L, Ye T and Chen J 2011 Opt. Lett. 36 13
[10] Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J and Yi Z 2020 Opt. Express 28 36771
[11] Ge J H, You C L, Feng H, Li X M, Wang M, Dong L F, Veronis G and Yun M J 2020 Opt. Express 28 31781
[12] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[13] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[14] Zhan S P, Kong D, Cao G T, He Z H, Wang Y, Xu G J and Li H J 2013 Solid State Commun. 174 50
[15] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J and Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107
[16] Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z and Zhao R T 2015 Opt. Express 23 6554
[17] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y and Xu K 2018 J. Phys. D:Appl. Phys. 51 055103
[18] Li H J, Wang L L and Zhai X 2016 IEEE Photon. Technol. Lett. 28 1454
[19] He Z H, Ren X C, Bai S M, Li H J, Cao D M and Li G 2018 Plasmonics 13 2255
[20] Zheng Z P, Luo Y, Yang H, Yi Z, Zhang J G, Song Q J, Yang W X, Liu C, Wu X W and Wu P H 2022 Phys. Chem. Chem. Phys. 24 8846
[21] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C and Wu K 2019 Opt. Express 27 3598
[22] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H and Zhou F Q 2019 Opt. Express 27 13884
[23] Sun C, Si J N, Dong Z W and Deng X X 2016 Opt. Express 24 11466
[24] Chai Z, Hu X, Yang H and Gong Q 2016 Appl. Phys. Lett. 108 151104
[25] Zhan S, Li H, Cao G, He Z, Li B and Yang H 2014 J. Phys. D:Appl. Phys. 47 205101
[26] Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 J. Phys. D:Appl. Phys. 48 235102
[27] Zhu Y, Hu X, Fu Y, Yang H and Gong Q 2013 Sci. Rep. 3 2338
[28] Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 J. Lightwave Technol. 33 3083
[29] Celis A, Nair M, Taleb-Ibrahimi A, Conrad E, Berger C, Heer W and Tejeda A 2016 J. Phys. D:Appl. Phys. 49 143001
[30] Lu H 2015 Appl. Phys. B 118 61
[31] Wang L, Li W and Jiang X Y 2015 Opt. Lett. 40 2325
[32] Noual A, Amrani M, Boudouti E H E, Pennec Y and Djafari-Rouhani D 2019 Materials Today:Proceedings 13 1076
[33] Zhao H L, Ren Y, Fang L and Lin H 2020 Results in Physics 16 102971
[34] Saraswat V, Jacobberger R M and Arnold M S 2021 ACS Nano 15 3674
[35] Wang X R and Dai H J 2010 Nat. Chem. 2 661
[36] Wang Q, Kitauta R, Suzuki S, Miyauchi Y, Matsuda K, Yamamoto Y, Arai S and Shinohara H 2016 ACS Nano 10 1475
[37] Li F, Jackson S D, Grillet C, Magi E, Hudson D, Madden S J, Moghe Y, Brien C O, Read A, Duvall S G, Atanackovic P, Eggleton B J and Moss D J 2011 Opt. Express 19 15212
[38] Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y and Li H J 2019 J. Phys. D:Appl. Phys. 52 025104
[39] Xu H, Li H, He Z, Chen Z, Zheng M and Zhao M 2017 Opt. Express 25 20780
[40] Wei B Z and Jian S S 2017 J. Phys. D:Appl. Phys. 50 355101
[41] Wang T, Zhang Y, Hong Z and Han Z 2014 Opt. Express 22 21529
[42] Lu H, Liu X M, Mao D, Gong Y K and Wang G X 2011 Opt. Lett. 36 3233
[43] Lu H, Liu X M and Mao D 2012 Phys. Rev. A 85 053803
[44] Ren T X and Chen L 2019 Opt. Lett. 44 5446
[45] Neubert T J, Wehrhold M, Kaya N S and Balasubramanian K 2020 Nanotechnology 31 405201
[46] Zhou F Q, Wang Y Q, Zhang X, Wang J W, Liu Z M, Luo X, Zhang Z B and Gao E D 2021 J. Phys. D:Appl. Phys. 54 054002
[47] Zheng Z P, Zheng Y, Luo Y, Yi Z, Zhang J G, Liu Z M, Yang W X, Yu Y, Wu X W and Wu P H 2022 Phys. Chem. Chem. Phys. 24 2527
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!